Comparison of different chemometric and analytical methods for the prediction of particle size distribution in pharmaceutical powders
被引:0
|
作者:
Mafalda C. Sarraguça
论文数: 0引用数: 0
h-index: 0
机构:Universidade do Porto,REQUIMTE, Departamento de Química, Faculdade de Farmácia
Mafalda C. Sarraguça
Ana V. Cruz
论文数: 0引用数: 0
h-index: 0
机构:Universidade do Porto,REQUIMTE, Departamento de Química, Faculdade de Farmácia
Ana V. Cruz
Helena R. Amaral
论文数: 0引用数: 0
h-index: 0
机构:Universidade do Porto,REQUIMTE, Departamento de Química, Faculdade de Farmácia
Helena R. Amaral
Paulo C. Costa
论文数: 0引用数: 0
h-index: 0
机构:Universidade do Porto,REQUIMTE, Departamento de Química, Faculdade de Farmácia
Paulo C. Costa
João A. Lopes
论文数: 0引用数: 0
h-index: 0
机构:Universidade do Porto,REQUIMTE, Departamento de Química, Faculdade de Farmácia
João A. Lopes
机构:
[1] Universidade do Porto,REQUIMTE, Departamento de Química, Faculdade de Farmácia
[2] Universidade do Porto,Serviço de Tecnologia Farmacêutica
来源:
Analytical and Bioanalytical Chemistry
|
2011年
/
399卷
关键词:
Pharmaceutical powders;
Particle size distribution;
Near-infrared spectroscopy;
Flowability properties;
Partial least squares 1;
Partial least squares 2;
Multi-block partial least squares;
D O I:
暂无
中图分类号:
学科分类号:
摘要:
This work compares the estimation of the particle size distribution of a pharmaceutical powder using near-infrared spectroscopy (NIRS), powder flowability properties, and components concentration. The estimations were made by considering the former data blocks separately and together using a multi-block approach. The powders were based on a formulation of paracetamol as the pharmaceutical active ingredient. The reference method used to determine particle size distribution was sieving. Partial least squares methods were used to estimate the multivariate regression models, and the results were compared in terms of figures of merit. It was shown that the partial least squares methods gave similar prediction errors. Regarding the data blocks used, the NIRS block was proven the most advantageous to estimate the particle size distribution. The prediction error of the NIRS block was similar to the other data blocks with additional advantages such as less generalization problems and the possibility of its use to predict additional physical and chemical properties with an improvement to analysis time. The multi-block approach produced the worst results but nevertheless allowed a deeper understanding of the individual contributions of the data blocks in the prediction of the particle size distribution.
机构:
Orion Pharma, Orionintie 1, FI-02200 Espoo, Finland
Univ Helsinki, Fac Pharm, Viikinkaari 5 E, Helsinki 00014, FinlandOrion Pharma, Orionintie 1, FI-02200 Espoo, Finland
Maki-Lohiluoma, Eero
Sakkinen, Niko
论文数: 0引用数: 0
h-index: 0
机构:
Top Data Sci Ltd, Kuortaneenkatu 2, FI-00510 Helsinki, FinlandOrion Pharma, Orionintie 1, FI-02200 Espoo, Finland
Sakkinen, Niko
Palomaki, Matti
论文数: 0引用数: 0
h-index: 0
机构:
Top Data Sci Ltd, Kuortaneenkatu 2, FI-00510 Helsinki, FinlandOrion Pharma, Orionintie 1, FI-02200 Espoo, Finland