Flat Hyperbolic Centro-affine Tchebychev Hypersurfaces of R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{4}$$\end{document}

被引:0
|
作者
Sébastien Lalléchère
Lucius Ramifidisoa
Blaise Ravelo
机构
[1] University of Antsiranana,ENSET
[2] Université Clermont Auvergne (UCA),CNRS, SIGMA Clermont, Institut Pascal, Aubière
[3] Nanjing University of Information and Science Technology,undefined
关键词
Curvature tensor; hyperbolic hypersurface; centro-affine hypersurface; Tchebychev; Levi-Civita connection; 53C17; 53C20;
D O I
10.1007/s00025-021-01363-z
中图分类号
学科分类号
摘要
We study centro-affine Tchebychev hyperbolic hypersurfaces M in R4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^{4}$$\end{document}, which satisfy the following conditions: for all X,Y,Z∈TpM\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$X,Y,Z \in T_{p}M$$\end{document}: M is flat, it means that the curvature tensor R^\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{R}$$\end{document} associated with the Levi-Civita connection of the centro-affine metric satisfies R^(X,Y)Z=0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{R}(X,Y)Z = 0$$\end{document};The Tchebychev vector field T#\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ T^{\#}$$\end{document} satisfies ∇^XT#=αX\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\widehat{\nabla }_{X}T^{\#}=\alpha X $$\end{document} where α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document} is a differentiable function on M, that is to say that M is a Tchebychev surface as introduced by Samelson from his work (Arch Ration Mech Anal 114:237–254) in 1991. So, we find Theorem 1 on the next page.
引用
收藏
相关论文
共 5 条