Applying different types of artificial neural network for modeling thermal conductivity of nanofluids containing silica particles

被引:0
|
作者
Akbar Maleki
Arman Haghighi
Misagh Irandoost Shahrestani
Zahra Abdelmalek
机构
[1] Shahrood University of Technology,Faculty of Mechanical Engineering
[2] University of California,Department of Mechanical Engineering
[3] University of Tehran,School of Mechanical Engineering
[4] Duy Tan University,Institute of Research and Development
[5] Duy Tan University,Faculty of Medicine
来源
Journal of Thermal Analysis and Calorimetry | 2021年 / 144卷
关键词
Silica nanoparticles; Thermal conductivity; Artificial neural network; Nanofluid;
D O I
暂无
中图分类号
学科分类号
摘要
Nanofluids are widely applicable in thermal devices with porous structures. Silica nanoparticles have been dispersed in different heat transfer fluids in order to increase their thermal conductivity and heat transfer capability. In this study, group method of data handling (GMDH) and multilayer perceptron artificial neural networks are applied for determining thermal conductivity of nanofluids with silica particles and different base fluids such as ethylene glycol, glycerol, water and ethylene glycol–water mixture. For cases with multilayer perceptron models, trained by applying scaled conjugate gradient (SCG) and Levenberg–Marquardt (LM) have been tested as two different training algorithms. The outputs of the applied models have good agreement with the values obtained in experimental studies. The values of R2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${R}^{2}$$\end{document} in the optimum conditions of using GMDH, LM and SCG are 0.9997, 0.9991 and 0.9998, respectively. In addition, the MSE values of the mentioned methods are approximately 0.000010, 0.000032 and 0.0000078, respectively.
引用
收藏
页码:1613 / 1622
页数:9
相关论文
共 50 条
  • [1] Applying different types of artificial neural network for modeling thermal conductivity of nanofluids containing silica particles
    Maleki, Akbar
    Haghighi, Arman
    Shahrestani, Misagh Irandoost
    Abdelmalek, Zahra
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 144 (04) : 1613 - 1622
  • [2] Thermal Conductivity Prediction of Nanofluids Containing SiC particles by Using Artificial Neural Network
    Shahzad, Rehman Muhammad
    Fard, Habib Forootan
    Mahariq, Ibrahim
    Assad, Mamdouh El Haj
    AlShabi, Mohammad
    ENERGY HARVESTING AND STORAGE: MATERIALS, DEVICES, AND APPLICATIONS XII, 2022, 12090
  • [3] Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS
    Maleki, Akbar
    Elahi, Milad
    Assad, Mamdouh El Haj
    Nazari, Mohammad Alhuyi
    Shadloo, Mostafa Safdari
    Nabipour, Narjes
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2021, 143 (06) : 4261 - 4272
  • [4] Thermal conductivity modeling of nanofluids with ZnO particles by using approaches based on artificial neural network and MARS
    Akbar Maleki
    Milad Elahi
    Mamdouh El Haj Assad
    Mohammad Alhuyi Nazari
    Mostafa Safdari Shadloo
    Narjes Nabipour
    Journal of Thermal Analysis and Calorimetry, 2021, 143 : 4261 - 4272
  • [5] Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network
    Komeilibirjandi, Ali
    Raffiee, Amir Hossein
    Maleki, Akbar
    Alhuyi Nazari, Mohammad
    Safdari Shadloo, Mostafa
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2020, 139 (04) : 2679 - 2689
  • [6] Thermal conductivity prediction of nanofluids containing CuO nanoparticles by using correlation and artificial neural network
    Ali Komeilibirjandi
    Amir Hossein Raffiee
    Akbar Maleki
    Mohammad Alhuyi Nazari
    Mostafa Safdari Shadloo
    Journal of Thermal Analysis and Calorimetry, 2020, 139 : 2679 - 2689
  • [7] Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network
    Mohammad Hemmat Esfe
    Seyfolah Saedodin
    Mehdi Bahiraei
    Davood Toghraie
    Omid Mahian
    Somchai Wongwises
    Journal of Thermal Analysis and Calorimetry, 2014, 118 : 287 - 294
  • [8] Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network
    Hemmat Esfe, Mohammad
    Saedodin, Seyfolah
    Bahiraei, Mehdi
    Toghraie, Davood
    Mahian, Omid
    Wongwises, Somchai
    JOURNAL OF THERMAL ANALYSIS AND CALORIMETRY, 2014, 118 (01) : 287 - 294
  • [9] An artificial neural network based approach for prediction the thermal conductivity of nanofluids
    Elsheikh, Ammar H.
    Sharshir, Swellam W.
    Ismail, A. S.
    Sathyamurthy, Ravishankar
    Abdelhamid, Talaat
    Edreis, Elbager M. A.
    Kabeel, A. E.
    Haiou, Zhang
    SN APPLIED SCIENCES, 2020, 2 (02):
  • [10] Prediction of thermal conductivity of various nanofluids using artificial neural network
    Ahmadloo, Ebrahim
    Azizi, Sadra
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2016, 74 : 69 - 75