Large deformations of Timoshenko and Euler beams under distributed load

被引:0
作者
A. Della Corte
A. Battista
F. dell’Isola
P. Seppecher
机构
[1] University of L’Aquila,M&MoCS, Research Center
[2] Université de La Rochelle,DISG
[3] University La Sapienza,IMATH
[4] Université de Toulon,undefined
来源
Zeitschrift für angewandte Mathematik und Physik | 2019年 / 70卷
关键词
Nonlinear elasticity; Timoshenko beam; Euler beam; Stability of solutions of nonlinear ODEs; 74B20; 34B15; 49J45;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, the general equilibrium equations for a geometrically nonlinear version of the Timoshenko beam are derived from the energy functional. The particular case in which the shear and extensional stiffnesses are infinite, which correspond to the inextensible Euler beam model, is studied under a uniformly distributed load. All the global and local minimizers of the variational problem are characterized, and the relative monotonicity and regularity properties are established.
引用
收藏
相关论文
共 110 条
  • [1] Bernoulli D(1843)The 26th letter to Euler Corresp. Math. Phys. 2 1742-227
  • [2] Bernoulli J(1692)Quadratura curvae, e cujus evolutione describitur inflexae laminae curvatura Die Werke von Jakob Bernoulli 1691 223-275
  • [3] Antman SS(1995)Nonlinear problems of elasticity SIAM Rev. 37 637-404
  • [4] Renardy M(1945)Large deflection of cantilever beams Q. Appl. Math. 3 272-2866
  • [5] Bisshopp KE(2002)Invariants of the stretch tensors and their application to finite elasticity theory Math. Mech. Solids 7 393-45
  • [6] Drucker DC(1999)Towards a classification of Euler–Kirchhoff filaments J. Math. Phys. 40 2830-416
  • [7] Steigmann DJ(2001)On the dynamics of elastic strips J. Nonlinear Sci. 11 3-924
  • [8] Nizette M(2006)An asymptotic non-linear model for thin-walled rods with strongly curved open cross-section Int. J. Non Linear Mech. 41 396-31
  • [9] Goriely A(2015)An unconstrained dynamic approach for the generalised beam theory Contin. Mech. Thermodyn. 27 879-730
  • [10] Goriely A(2014)A complete dynamic approach to the generalized beam theory cross-section analysis including extension and shear modes Math. Mech. Solids 19 900-20