On Examples of Intermediate Subfactors from Conformal Field Theory

被引:0
作者
Feng Xu
机构
[1] University of California at Riverside,Department of Mathematics
来源
Communications in Mathematical Physics | 2013年 / 320卷
关键词
Vertex Operator; Conformal Field Theory; Vertex Operator Algebra; Loop Group; Vacuum Representation;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by our subfactor generalization of Wall’s conjecture, in this paper we determine all intermediate subfactors for conformal subnets corresponding to four infinite series of conformal inclusions, and as a consequence we verify that these series of subfactors verify our conjecture. Our results can be stated in the framework of Vertex Operator Algebras. We also verify our conjecture for Jones-Wassermann subfactors from representations of Loop groups extending our earlier results.
引用
收藏
页码:761 / 781
页数:20
相关论文
共 59 条
[11]  
Fröhlich J.(2011)On a subfactor generalization of Wall’s conjecture J. Algebra 332 457-468
[12]  
Gabbiani F.(2005)Solitons in affine and permutation orbifolds Commun. Math. Phys. 253 723-764
[13]  
Frenkel I.(1988)Vertex Operators in conformal field theory on Adv. Studies in Pure Math. 16 297-372
[14]  
Zhu Y.(1988) and monodromy representations of braid group Adv. in Math. 70 156-234
[15]  
Gannon T.(1995)Modular and conformal invariance constraints in representation theory of affine algebras Commun. Math. Phys. 173 1-16
[16]  
Ruelle P.(2003)Branching rules for conformal embeddings Commun. Math. Phys. 237 7-30
[17]  
Walton M.A.(1995)Conformal subnets and intermediate subfactors Rev. Math. Phys. 7 567-597
[18]  
Goodman F.(1985)Nets of subfactors Phys. Lett. B 160 111-116
[19]  
Wenzl H.(1998)Symmetric spaces, Sugawara’s energy momentum tensor in two dimensions and free fermions J. Funct. Anal. 155 25-63
[20]  
Grossman P.(1983)A Galois correspondence for compact groups of automorphisms of von Neumann Algebras with a generalization to Kac algebras Invent. Math. 72 1-25