On Examples of Intermediate Subfactors from Conformal Field Theory

被引:0
作者
Feng Xu
机构
[1] University of California at Riverside,Department of Mathematics
来源
Communications in Mathematical Physics | 2013年 / 320卷
关键词
Vertex Operator; Conformal Field Theory; Vertex Operator Algebra; Loop Group; Vacuum Representation;
D O I
暂无
中图分类号
学科分类号
摘要
Motivated by our subfactor generalization of Wall’s conjecture, in this paper we determine all intermediate subfactors for conformal subnets corresponding to four infinite series of conformal inclusions, and as a consequence we verify that these series of subfactors verify our conjecture. Our results can be stated in the framework of Vertex Operator Algebras. We also verify our conjecture for Jones-Wassermann subfactors from representations of Loop groups extending our earlier results.
引用
收藏
页码:761 / 781
页数:20
相关论文
共 59 条
[1]  
Altschüler D.(1990)The branching rules of conformal embeddings Commun. Math. Phys. 132 349-364
[2]  
Bauer M.(1998)Modular invariants, graphs and α-induction for nets of subfactors. I. Commun Math. Phys. 197 361-386
[3]  
Itzykson C.(2000)Chiral structure of modular invariants for subfactors Commun. Math. Phys. 210 733-784
[4]  
Böckenhauer J.(1997)Algebras associated to intermediate subfactors Invent. Math. 128 89-157
[5]  
Evans D.E.(1993)Operator algebras and Conformal field theory Commun. Math. Phys. 155 569-640
[6]  
Böckenhauer J.(1992)Vertex operator algebras associated to representations of affine and Virasoro algebras Duke Math. J. 66 123-168
[7]  
Evans D.E.(1996)Automorphism modular invariants of current algebras Commun. Math. Phys. 179 121-156
[8]  
Kawahigashi Y.(1990)Littlewood-Richardson coefficients for Hecke algebras at roots of unity Adv. Math. 82 244-265
[9]  
Bisch D.(2007)Intermediate subfactors with no extra structure J. Amer. Math. Soc. 20 219-265
[10]  
Jones V.F.R.(1996)The conformal spin and statistics theorem Commun. Math. Phys. 181 11-35