Diffusional conductances to CO2 as a target for increasing photosynthesis and photosynthetic water-use efficiency

被引:0
|
作者
Jaume Flexas
Ülo Niinemets
Alexander Gallé
Margaret M. Barbour
Mauro Centritto
Antonio Diaz-Espejo
Cyril Douthe
Jeroni Galmés
Miquel Ribas-Carbo
Pedro L. Rodriguez
Francesc Rosselló
Raju Soolanayakanahally
Magdalena Tomas
Ian J. Wright
Graham D. Farquhar
Hipólito Medrano
机构
[1] Universitat de les Illes Balears,Research Group on Plant Biology under Mediterranean Conditions, Departament de Biologia
[2] Estonian University of Life Sciences,Institute of Agricultural and Environmental Sciences
[3] Bayer CropScience NV,Faculty of Agriculture, Food and Natural Resources
[4] The University of Sydney,Institute for Plant Protection
[5] National Research Council,Instituto de Recursos Naturales y Agrobiología de Sevilla (IRNAS, CSIC)
[6] Irrigation and Crop Ecophysiology Group,Instituto de Biología Molecular y Celular de Plantas
[7] Consejo Superior de Investigaciones Científicas-Universidad Politécnica de Valencia,Computational Biology and Bioinformatics Research Group, Departament de Ciències Matemàtiques i Informàtica
[8] Universitat de les Illes Balears,Science and Technology Branch
[9] Agriculture and Agri-Food Canada,Department of Biological Sciences
[10] Indian Head,Research School of Biology
[11] Macquarie University,undefined
[12] The Australian National University,undefined
来源
Photosynthesis Research | 2013年 / 117卷
关键词
Photosynthesis; Water-use efficiency; Stomatal conductance; Mesophyll conductance; Meta-analysis;
D O I
暂无
中图分类号
学科分类号
摘要
A key objective for sustainable agriculture and forestry is to breed plants with both high carbon gain and water-use efficiency (WUE). At the level of leaf physiology, this implies increasing net photosynthesis (AN) relative to stomatal conductance (gs). Here, we review evidence for CO2 diffusional constraints on photosynthesis and WUE. Analyzing past observations for an extensive pool of crop and wild plant species that vary widely in mesophyll conductance to CO2 (gm), gs, and foliage AN, it was shown that both gs and gm limit AN, although the relative importance of each of the two conductances depends on species and conditions. Based on Fick’s law of diffusion, intrinsic WUE (the ratio AN/gs) should correlate on the ratio gm/gs, and not gm itself. Such a correlation is indeed often observed in the data. However, since besides diffusion AN also depends on photosynthetic capacity (i.e., Vc,max), this relationship is not always sustained. It was shown that only in a very few cases, genotype selection has resulted in simultaneous increases of both AN and WUE. In fact, such a response has never been observed in genetically modified plants specifically engineered for either reduced gs or enhanced gm. Although increasing gm alone would result in increasing photosynthesis, and potentially increasing WUE, in practice, higher WUE seems to be only achieved when there are no parallel changes in gs. We conclude that for simultaneous improvement of AN and WUE, genetic manipulation of gm should avoid parallel changes in gs, and we suggest that the appropriate trait for selection for enhanced WUE is increased gm/gs.
引用
收藏
页码:45 / 59
页数:14
相关论文
共 50 条
  • [21] Declining tree growth rates despite increasing water-use efficiency under elevated CO2 reveals a possible global overestimation of CO2 fertilization effect
    Lafitte, Benjamin
    Seyler, Barnabas C.
    Wang, Wenzhi
    Li, Pengbo
    Du, Jie
    Tang, Ya
    HELIYON, 2022, 8 (10)
  • [22] Response of Plants' Water Use Efficiency to Increasing Atmospheric CO2 Concentration
    Wang, Guoan
    Feng, Xiahong
    ENVIRONMENTAL SCIENCE & TECHNOLOGY, 2012, 46 (16) : 8610 - 8620
  • [23] Global reduction in sensitivity of vegetation water use efficiency to increasing CO2
    Chai, Yuanfang
    Miao, Chiyuan
    Berghuijs, Wouter R.
    Yang, Yunping
    Zhu, Boyuan
    Hu, Yong
    Slater, Louise
    JOURNAL OF HYDROLOGY, 2024, 641
  • [24] PHOTOSYNTHESIS, TRANSPIRATION, AND WATER-USE EFFICIENCY OF COTTON LEAVES AND FRUIT
    WULLSCHLEGER, SD
    OOSTERHUIS, DM
    PHOTOSYNTHETICA, 1991, 25 (04) : 505 - 515
  • [25] EFFECTS OF LEAF AGE ON PHOTOSYNTHESIS AND WATER-USE EFFICIENCY OF PAPAYA
    LIN, ZF
    EHLERINGER, J
    PHOTOSYNTHETICA, 1982, 16 (04) : 514 - 519
  • [26] Effects of CO2 concentration and temperature on leaf photosynthesis and water use efficiency in maize
    Liu L.
    Hao L.
    Li F.
    Guo L.
    Zhang X.
    He C.
    Zheng Y.
    Nongye Gongcheng Xuebao/Transactions of the Chinese Society of Agricultural Engineering, 2020, 36 (05): : 122 - 129
  • [27] NET PHOTOSYNTHESIS AND WATER-USE EFFICIENCY DURING A DRYING CYCLE
    AHO, N
    DAUDET, FA
    VARTANIAN, N
    COMPTES RENDUS HEBDOMADAIRES DES SEANCES DE L ACADEMIE DES SCIENCES SERIE D, 1979, 288 (05): : 501 - 504
  • [28] Effects of soil drying on photosynthesis and water-use efficiency of quinoa
    Jacobsen, SE
    Liu, FL
    Jensen, CR
    JOURNAL OF EXPERIMENTAL BOTANY, 2003, 54 : 9 - 9
  • [29] RESPONSE OF PHOTOSYNTHESIS, STOMATAL CONDUCTANCE AND WATER-USE EFFICIENCY TO ELEVATED CO2 AND NUTRIENT SUPPLY IN ACCLIMATED SEEDLINGS OF PHASEOLUS-VULGARIS L
    RADOGLOU, KM
    APHALO, P
    JARVIS, PG
    ANNALS OF BOTANY, 1992, 70 (03) : 257 - 264
  • [30] Disentangling the effect of competition, CO2 and climate on intrinsic water-use efficiency and tree growth
    Fernandez-de-Una, Laura
    McDowell, Nate G.
    Canellas, Isabel
    Gea-Izquierdo, Guillermo
    JOURNAL OF ECOLOGY, 2016, 104 (03) : 678 - 690