New Upper Bounds for the Number of Embeddings of Minimally Rigid Graphs

被引:0
|
作者
Evangelos Bartzos
Ioannis Z. Emiris
Raimundas Vidunas
机构
[1] “Athena” Research Center,Department of Informatics & Telecommunications
[2] National & Kapodistrian University of Athens,Institute of Applied Mathematics, Faculty of Mathematics and Informatics
[3] Vilnius University,undefined
来源
Discrete & Computational Geometry | 2022年 / 68卷
关键词
Distance geometry; Minimally rigid graph; Rigid embedding; Upper bound; Laman graph; Oriented graph; 52C25; 14N10;
D O I
暂无
中图分类号
学科分类号
摘要
By definition, a rigid graph in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} (or on a sphere) has a finite number of embeddings up to rigid motions for a given set of edge length constraints. These embeddings are related to the real solutions of an algebraic system. Naturally, the complex solutions of such systems extend the notion of rigidity to Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d$$\end{document}. A major open problem has been to obtain tight upper bounds on the number of embeddings in Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d$$\end{document}, for a given number |V| of vertices, which obviously also bound their number in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}. Moreover, in most known cases, the maximal numbers of embeddings in Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d$$\end{document} and Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} coincide. For decades, only the trivial bound of O(2d|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(2^{d|V|})$$\end{document} was known on the number of embeddings. Recently, matrix permanent bounds have led to a small improvement for d≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 5$$\end{document}. This work improves upon the existing upper bounds for the number of embeddings in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} and Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document}, by exploiting outdegree-constrained orientations on a graphical construction, where the proof iteratively eliminates vertices or vertex paths. For the most important cases of d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} and d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document}, the new bounds are O(3.7764|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(3.7764^{|V|})$$\end{document} and O(6.8399|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(6.8399^{|V|})$$\end{document}, respectively. In general, we improve the exponent basis in the asymptotic behavior with respect to the number of vertices of the recent bound mentioned above by the factor of 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{2}$$\end{document}. Besides being the first substantial improvement upon a long-standing upper bound, our method is essentially the first general approach relying on combinatorial arguments rather than algebraic root counts.
引用
收藏
页码:796 / 816
页数:20
相关论文
共 50 条
  • [31] Upper and lower bounds to indentation of rigid ball into semi-infinite solid
    Tirosh, J.
    Tylis, A.
    Davidi, G.
    INTERNATIONAL JOURNAL OF MECHANICAL SCIENCES, 2008, 50 (02) : 328 - 341
  • [32] The performance of an upper bound on the fractional chromatic number of weighted graphs
    Ganesan, Ashwin
    APPLIED MATHEMATICS LETTERS, 2010, 23 (05) : 597 - 599
  • [33] A sharp upper bound for the number of stable sets in graphs with given number of cut edges
    Hua, Hongbo
    APPLIED MATHEMATICS LETTERS, 2009, 22 (09) : 1380 - 1385
  • [34] New estimations on the upper bounds for the nuclear norm of a tensor
    Xu Kong
    Jicheng Li
    Xiaolong Wang
    Journal of Inequalities and Applications, 2018
  • [35] New bounds on the Ramsey number r(Im, Ln)
    Ihringer, Ferdinand
    Rajendraprasad, Deepak
    Weinert, Thilo
    DISCRETE MATHEMATICS, 2021, 344 (03)
  • [36] New Combinatorial Topology Bounds for Renaming: The Upper Bound
    Castaneda, Armando
    Rajsbaum, Sergio
    JOURNAL OF THE ACM, 2012, 59 (01)
  • [37] New estimations on the upper bounds for the nuclear norm of a tensor
    Kong, Xu
    Li, Jicheng
    Wang, Xiaolong
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2018,
  • [38] New upper bounds for the spectral variation of a general matrix
    Xu, Xuefeng
    LINEAR & MULTILINEAR ALGEBRA, 2022, 70 (16): : 3070 - 3080
  • [39] Improved Upper Bounds on the Number of Non-Zero Weights of Cyclic Codes
    Chen, Bocong
    Fu, Yuqing
    Liu, Hongwei
    IEEE TRANSACTIONS ON INFORMATION THEORY, 2024, 70 (06) : 4079 - 4092
  • [40] Sum coloring and interval graphs: a tight upper bound for the minimum number of colors
    Nicoloso, S
    DISCRETE MATHEMATICS, 2004, 280 (1-3) : 251 - 257