New Upper Bounds for the Number of Embeddings of Minimally Rigid Graphs

被引:0
|
作者
Evangelos Bartzos
Ioannis Z. Emiris
Raimundas Vidunas
机构
[1] “Athena” Research Center,Department of Informatics & Telecommunications
[2] National & Kapodistrian University of Athens,Institute of Applied Mathematics, Faculty of Mathematics and Informatics
[3] Vilnius University,undefined
来源
Discrete & Computational Geometry | 2022年 / 68卷
关键词
Distance geometry; Minimally rigid graph; Rigid embedding; Upper bound; Laman graph; Oriented graph; 52C25; 14N10;
D O I
暂无
中图分类号
学科分类号
摘要
By definition, a rigid graph in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} (or on a sphere) has a finite number of embeddings up to rigid motions for a given set of edge length constraints. These embeddings are related to the real solutions of an algebraic system. Naturally, the complex solutions of such systems extend the notion of rigidity to Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d$$\end{document}. A major open problem has been to obtain tight upper bounds on the number of embeddings in Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d$$\end{document}, for a given number |V| of vertices, which obviously also bound their number in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}. Moreover, in most known cases, the maximal numbers of embeddings in Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d$$\end{document} and Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} coincide. For decades, only the trivial bound of O(2d|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(2^{d|V|})$$\end{document} was known on the number of embeddings. Recently, matrix permanent bounds have led to a small improvement for d≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 5$$\end{document}. This work improves upon the existing upper bounds for the number of embeddings in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} and Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document}, by exploiting outdegree-constrained orientations on a graphical construction, where the proof iteratively eliminates vertices or vertex paths. For the most important cases of d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} and d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document}, the new bounds are O(3.7764|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(3.7764^{|V|})$$\end{document} and O(6.8399|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(6.8399^{|V|})$$\end{document}, respectively. In general, we improve the exponent basis in the asymptotic behavior with respect to the number of vertices of the recent bound mentioned above by the factor of 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{2}$$\end{document}. Besides being the first substantial improvement upon a long-standing upper bound, our method is essentially the first general approach relying on combinatorial arguments rather than algebraic root counts.
引用
收藏
页码:796 / 816
页数:20
相关论文
共 50 条
  • [21] Upper signed k-domination number in graphs
    Zhou, Ligang
    Shan, Erfang
    Zhao, Yancai
    ARS COMBINATORIA, 2015, 122 : 307 - 318
  • [22] The Sharp Upper Bounds on the Aα-Spectral Radius of C4-Free Graphs and Halin Graphs
    Guo, Shu-Guang
    Zhang, Rong
    GRAPHS AND COMBINATORICS, 2022, 38 (01)
  • [23] Sharp upper bounds for the adjacency and the signless Laplacian spectral radius of graphs
    WU Xian-zhang
    LIU Jian-ping
    AppliedMathematics:AJournalofChineseUniversities, 2019, 34 (01) : 100 - 112
  • [24] Upper bounds on vertex distinguishing chromatic index of some Halin graphs
    ZHU Jun-qiao 1 BU Yue-hua 2
    Applied Mathematics:A Journal of Chinese Universities, 2012, (03) : 329 - 334
  • [25] Upper Bounds on the (Signless Laplacian) Spectral Radius of Irregular Weighted Graphs
    Shuiqun Xie
    Xiaodan Chen
    Xiuyu Li
    Xiaoqian Liu
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 2063 - 2080
  • [26] Sharp upper bounds for the adjacency and the signless Laplacian spectral radius of graphs
    Wu Xian-zhang
    Liu Jian-ping
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2019, 34 (01) : 100 - 112
  • [27] Sharp upper bounds for the adjacency and the signless Laplacian spectral radius of graphs
    Xian-zhang Wu
    Jian-ping Liu
    Applied Mathematics-A Journal of Chinese Universities, 2019, 34 : 100 - 112
  • [28] Upper Bounds on the (Signless Laplacian) Spectral Radius of Irregular Weighted Graphs
    Xie, Shuiqun
    Chen, Xiaodan
    Li, Xiuyu
    Liu, Xiaoqian
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (04) : 2063 - 2080
  • [29] Upper bounds on vertex distinguishing chromatic index of some Halin graphs
    Jun-qiao Zhu
    Yue-hua Bu
    Applied Mathematics-A Journal of Chinese Universities, 2012, 27 : 329 - 334
  • [30] Upper bounds on vertex distinguishing chromatic index of some Halin graphs
    Zhu Jun-qiao
    Bu Yue-hua
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2012, 27 (03) : 329 - 334