New Upper Bounds for the Number of Embeddings of Minimally Rigid Graphs

被引:0
|
作者
Evangelos Bartzos
Ioannis Z. Emiris
Raimundas Vidunas
机构
[1] “Athena” Research Center,Department of Informatics & Telecommunications
[2] National & Kapodistrian University of Athens,Institute of Applied Mathematics, Faculty of Mathematics and Informatics
[3] Vilnius University,undefined
来源
Discrete & Computational Geometry | 2022年 / 68卷
关键词
Distance geometry; Minimally rigid graph; Rigid embedding; Upper bound; Laman graph; Oriented graph; 52C25; 14N10;
D O I
暂无
中图分类号
学科分类号
摘要
By definition, a rigid graph in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} (or on a sphere) has a finite number of embeddings up to rigid motions for a given set of edge length constraints. These embeddings are related to the real solutions of an algebraic system. Naturally, the complex solutions of such systems extend the notion of rigidity to Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d$$\end{document}. A major open problem has been to obtain tight upper bounds on the number of embeddings in Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d$$\end{document}, for a given number |V| of vertices, which obviously also bound their number in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document}. Moreover, in most known cases, the maximal numbers of embeddings in Cd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {C}^d$$\end{document} and Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} coincide. For decades, only the trivial bound of O(2d|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(2^{d|V|})$$\end{document} was known on the number of embeddings. Recently, matrix permanent bounds have led to a small improvement for d≥5\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d\ge 5$$\end{document}. This work improves upon the existing upper bounds for the number of embeddings in Rd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb {R}^d$$\end{document} and Sd\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$S^d$$\end{document}, by exploiting outdegree-constrained orientations on a graphical construction, where the proof iteratively eliminates vertices or vertex paths. For the most important cases of d=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=2$$\end{document} and d=3\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$d=3$$\end{document}, the new bounds are O(3.7764|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(3.7764^{|V|})$$\end{document} and O(6.8399|V|)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$O(6.8399^{|V|})$$\end{document}, respectively. In general, we improve the exponent basis in the asymptotic behavior with respect to the number of vertices of the recent bound mentioned above by the factor of 2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\sqrt{2}$$\end{document}. Besides being the first substantial improvement upon a long-standing upper bound, our method is essentially the first general approach relying on combinatorial arguments rather than algebraic root counts.
引用
收藏
页码:796 / 816
页数:20
相关论文
共 50 条
  • [1] New Upper Bounds for the Number of Embeddings of Minimally Rigid Graphs
    Bartzos, Evangelos
    Emiris, Ioannis Z.
    Vidunas, Raimundas
    DISCRETE & COMPUTATIONAL GEOMETRY, 2022, 68 (03) : 796 - 816
  • [2] On the multihomogeneous Bezout bound on the number of embeddings of minimally rigid graphs
    Bartzos, Evangelos
    Emiris, Ioannis Z.
    Schicho, Josef
    APPLICABLE ALGEBRA IN ENGINEERING COMMUNICATION AND COMPUTING, 2020, 31 (5-6) : 325 - 357
  • [3] On the multihomogeneous Bézout bound on the number of embeddings of minimally rigid graphs
    Evangelos Bartzos
    Ioannis Z. Emiris
    Josef Schicho
    Applicable Algebra in Engineering, Communication and Computing, 2020, 31 : 325 - 357
  • [4] Lower Bounds on the Number of Realizations of Rigid Graphs
    Grasegger, Georg
    Koutschan, Christoph
    Tsigaridas, Elias
    EXPERIMENTAL MATHEMATICS, 2020, 29 (02) : 125 - 136
  • [5] UPPER BOUNDS ON THE SEMITOTAL FORCING NUMBER OF GRAPHS
    Liang, Yi-Ping
    Chen, Jie
    Xu, Shou-Jun
    BULLETIN OF THE AUSTRALIAN MATHEMATICAL SOCIETY, 2024, 109 (02) : 177 - 185
  • [6] Upper bounds on the upper signed total domination number of graphs
    Shan, Erfang
    Cheng, T. C. E.
    DISCRETE APPLIED MATHEMATICS, 2009, 157 (05) : 1098 - 1103
  • [7] On the maximal number of real embeddings of minimally rigid graphs in R2, R3 and S2
    Bartzos, Evangelos
    Emiris, Ioannis Z.
    Legersky, Jan
    Tsigaridas, Elias
    JOURNAL OF SYMBOLIC COMPUTATION, 2021, 102 : 189 - 208
  • [8] The new upper bounds on the spectral radius of weighted graphs
    Sorgun, Sezer
    Buyukkose, Serife
    APPLIED MATHEMATICS AND COMPUTATION, 2012, 218 (09) : 5231 - 5238
  • [9] Sharp upper bounds on the spectral radius of graphs
    Shu, JL
    Wu, YR
    LINEAR ALGEBRA AND ITS APPLICATIONS, 2004, 377 : 241 - 248
  • [10] New upper bounds on the number of non-zero weights of constacyclic codes
    Chen, Li
    Fu, Yuqing
    Liu, Hongwei
    DISCRETE MATHEMATICS, 2024, 347 (12)