Compact embedding theorems for fractional Sobolev spaces with variable exponents

被引:0
作者
Mohamed Berghout
Azeddine Baalal
机构
[1] University of Hassan II,Department of Mathematics and Computer Science
[2] Faculty of Sciences Ain Chock,undefined
来源
Advances in Operator Theory | 2020年 / 5卷
关键词
Fractional Sobolev spaces; Variable exponents; Compact embeddings; 46E35;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper we state and prove a new compact embedding theorem for fractional Sobolev spaces with variable exponents. As a consequence, we obtain version of the Rellich–Kondrachov theorem in this setting.
引用
收藏
页码:83 / 93
页数:10
相关论文
共 33 条
  • [1] Baalal A(2018)Traces and fractional Sobolev extension domains with variable exponent Int. J. Math. Anal. 12 85-98
  • [2] Berghout M(2019)Density properties for fractional Sobolev spaces with variable exponents Ann. Funct. Anal. 10 308-324
  • [3] Baalal A(2018)On a new fractional Sobolev space and applications to nonlocal variational problems with variable exponent Discrete Contin. Dyn. Syst. Ser. S 11 379-389
  • [4] Berghout M(2012)Hitchhiker’s guide to the fractional Sobolev spaces Bull. Sci. Math. 136 521-573
  • [5] Bahrouni A(2004)Riesz potential and Sobolev embeddings on generalized Lebesgue and Sobolev spaces Math. Nachr. 268 31-43
  • [6] Rădulescu VD(2017) and Adv. Oper. Theory 2 435-446
  • [7] Di Nezza E(2001)Traces for fractional Sobolev spaces with variable exponents J. Math. Anal. Appl. 263 424-446
  • [8] Palatucci G(2001)On the spaces J. Math. Anal. Appl. 255 333-348
  • [9] Valdinoci E(2010) and Expos. Math. 28 385-394
  • [10] Diening L(2010)Compact imbedding theorems with symmetry of Strauss–Lions type for the space Nonlinear Anal. 72 4551-4574