Complexity of limit cycles with block-sequential update schedules in conjunctive networks

被引:0
作者
Julio Aracena
Florian Bridoux
Luis Gómez
Lilian Salinas
机构
[1] Universidad de Concepción,Departamento de Ingeniería Matemática and CI2MA
[2] Universidad de Concepción,Departamento de Ingeniería Informática y Ciencias de la Computación and CI2MA
[3] Universidad del Bio-Bio,Departamento de Estadística, Facultad de Ciencias
[4] Normandie Univ,undefined
[5] UNICAEN,undefined
[6] ENSICAEN,undefined
[7] CNRS,undefined
[8] GREYC,undefined
来源
Natural Computing | 2023年 / 22卷
关键词
Boolean network; Limit cycle; Update schedule; Update digraph; NP-hardness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we deal with the following decision problem: given a conjunctive Boolean network defined by its interaction digraph, does it have a limit cycle of a given length k? We prove that this problem is NP-complete in general if k is a parameter of the problem and is in P if the interaction digraph is strongly connected. The case where k is fixed, but the interaction digraph is not strongly connected, remains open. Furthermore, we study some variations of the decision problem: given a conjunctive Boolean network, does there exist a block-sequential (resp. sequential) update schedule such that there is a limit cycle of length k? We prove that these problems are NP-complete for any fixed constant k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}.
引用
收藏
页码:411 / 429
页数:18
相关论文
共 86 条
  • [11] Goles E(2008)Robustness in regulatory networks: a multi-disciplinary approach Acta Biotheor 56 27-49
  • [12] Aracena J(2016)Reduction and fixed points of Boolean networks and linear network coding solvability IEEE Trans Inf Theory 62 2504-2519
  • [13] Fanchon E(2011)Graph-theoretical constructions for graph entropy and network coding based communications IEEE Trans Inf Theory 57 6703-6717
  • [14] Montalva M(2018)Stability structures of conjunctive Boolean networks Automatica 89 8-20
  • [15] Noual M(2000)Dynamical behavior of Kauffman networks with AND-OR gates J Biol Syst 8 151-175
  • [16] Aracena J(2013)Deconstruction and dynamical robustness of regulatory networks: application to the yeast cell cycle networks Bull Math Biol 75 939-966
  • [17] Goles E(2014)Computational complexity of threshold automata networks under different updating schemes Theor Comput Sci 559 3-19
  • [18] Moreira A(2012)Disjunctive networks and update schedules Adv Appl Math 48 646-662
  • [19] Salinas L(2006)Reciprocal regulation of a glucocorticoid receptor-steroidogenic factor-1 transcription complex on the Dax-1 promoter by glucocorticoids and adrenocorticotropic hormone in the adrenal cortex Mol Endocrinol 20 2711-2723
  • [20] Aracena J(1982)Neural networks and physical systems with emergent collective computational abilities Proc Natl Acad Sci 79 2554-2558