Complexity of limit cycles with block-sequential update schedules in conjunctive networks

被引:0
作者
Julio Aracena
Florian Bridoux
Luis Gómez
Lilian Salinas
机构
[1] Universidad de Concepción,Departamento de Ingeniería Matemática and CI2MA
[2] Universidad de Concepción,Departamento de Ingeniería Informática y Ciencias de la Computación and CI2MA
[3] Universidad del Bio-Bio,Departamento de Estadística, Facultad de Ciencias
[4] Normandie Univ,undefined
[5] UNICAEN,undefined
[6] ENSICAEN,undefined
[7] CNRS,undefined
[8] GREYC,undefined
来源
Natural Computing | 2023年 / 22卷
关键词
Boolean network; Limit cycle; Update schedule; Update digraph; NP-hardness;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we deal with the following decision problem: given a conjunctive Boolean network defined by its interaction digraph, does it have a limit cycle of a given length k? We prove that this problem is NP-complete in general if k is a parameter of the problem and is in P if the interaction digraph is strongly connected. The case where k is fixed, but the interaction digraph is not strongly connected, remains open. Furthermore, we study some variations of the decision problem: given a conjunctive Boolean network, does there exist a block-sequential (resp. sequential) update schedule such that there is a limit cycle of length k? We prove that these problems are NP-complete for any fixed constant k≥2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$k \ge 2$$\end{document}.
引用
收藏
页码:411 / 429
页数:18
相关论文
共 86 条
  • [1] Aledo JA(2012)Parallel discrete dynamical systems on maxterm and minterm Boolean functions Math Comput Model 55 666-671
  • [2] Martinez S(2013)On the number of different dynamics in Boolean networks with deterministic update schedules Math Biosci 242 188-194
  • [3] Pelayo FL(2004)Fixed points and maximal independent sets in AND-OR networks Discrete Appl Math 138 277-288
  • [4] Valverde JC(2011)Combinatorics on update digraphs in Boolean networks Discrete Appl Math 159 401-409
  • [5] Aracena J(2009)On the robustness of update schedules in Boolean networks Biosystems 97 1-8
  • [6] Demongeot J(2013)Limit cycles and update digraphs in Boolean networks Discrete Appl Math 161 1-2
  • [7] Fanchon E(2017)Fixed points in conjunctive networks and maximal independent sets in graph contractions J Comput Syst Sci 88 145-163
  • [8] Montalva M(2004)Prime sieves using binary quadratic forms Math Comput 73 1023-1030
  • [9] Aracena J(2005)Boolean monomial dynamical systems Ann Comb 8 425-439
  • [10] Demongeot J(2002)Modeling and simulation of genetic regulatory systems: a literature review J Comput Biol 9 67-103