On the well-posedness of magnetohydrodynamics system with Hall and ion-slip in critical spaces

被引:0
作者
Lvqiao Liu
机构
[1] Chinese University of Hong Kong,Department of Mathematics
来源
Zeitschrift für angewandte Mathematik und Physik | 2020年 / 71卷
关键词
Hall-MHD; Global existence; Critical space; Decay estimates; Ion-slip; 35Q35; 76D03;
D O I
暂无
中图分类号
学科分类号
摘要
In this paper, we establish the global well-posedness of solutions for the magnetohydrodynamics with Hall and ion-slip effects in critical space by constructing the current function J=∇×B\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$J=\nabla \times B$$\end{document} as an additional unknown. Meanwhile, we consider the long-time behavior of the solutions and get some decay estimates.
引用
收藏
相关论文
共 42 条
[1]  
Acheritogaray M(2011)Kinetic formulation and global existence for the Hall-Magneto-hydrodynamics system Kinet. Relat. Models 4 901-918
[2]  
Degond P(2016)Existence and stability of global large strong solutions for the Hall-MHD system Differ. Integral Equ. 29 977-1000
[3]  
Frouvelle A(1981)Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires Ann. Sci. École Norm. Sup. 14 209-246
[4]  
Liu J-G(2018)Global well-posedness of the incompressible magnetohydrodynamics Arch. Ration. Mech. Anal. 228 969-993
[5]  
Benvenutti MJ(2014)Well-posedness for Hall-magnetohydrodynamics Ann. Inst. H. Poincaré Anal. Non Linéaire 31 555-565
[6]  
Ferreira LCF(2014)On the blow-up criterion and small data global existence for the Hall-magnetohydrodynamics J. Differ. Equ.tions 256 3835-3858
[7]  
Bony J-M(1992)Remarques sur l’existence globale pour le système de Navier-Stokes incompressible SIAM J. Math. Anal. 23 20-28
[8]  
Cai Y(1999)Théorèmes d’unicité pour le système de Navier–Stokes tridimensionnel J. Anal. Math. 77 27-50
[9]  
Lei Z(1995)Flot de champs de vecteurs non lipschitziens et équations de Navier–Stokes J. Differ. Equ. 121 314-328
[10]  
Chae D(2000)Global existence in critical spaces for compressible Navier–Stokes equations Invent. Math. 141 579-614