On finite simple groups and Kneser graphs

被引:0
作者
Andrea Lucchini
Attila Maróti
机构
[1] Dipartimento di Matematica Pura ed Applicata,Alfréd Rényi Institute of Mathematics
[2] Hungarian Academy of Sciences,Department of Mathematics
[3] University of Southern California,undefined
来源
Journal of Algebraic Combinatorics | 2009年 / 30卷
关键词
Kneser graph; Chromatic number; Finite simple group; Special linear group; Symmetric group;
D O I
暂无
中图分类号
学科分类号
摘要
For a finite group G let Γ(G) be the (simple) graph defined on the elements of G with an edge between two (distinct) vertices if and only if they generate G. The chromatic number of Γ(G) is considered for various non-solvable groups G.
引用
收藏
页码:549 / 566
页数:17
相关论文
共 33 条
[1]  
Blackburn S.(2006)Sets of permutations that generate the symmetric group pairwise J. Combin. Theory Ser. A 113 1572-1581
[2]  
Bollobás B.(1973)Erdős, P. On the structure of edge graphs Bull. London Math. Soc. 5 317-321
[3]  
Britnell J.R.(2008)Sets of elements that pairwise generate a linear group J. Combin. Theory Ser. A 115 442-465
[4]  
Evseev A.(1999)Subgroup coverings of some linear groups Bull. Austral Math. Soc. 60 227-238
[5]  
Guralnick R.M.(2006)Colouring lines in projective spaces J. Combin. Theory Ser. A 113 39-52
[6]  
Holmes P.E.(1981)On the Erdős-Stone theorem J. London Math. Soc. 23 207-214
[7]  
Maróti A.(1946)On the structure of linear graphs Bull. American Math. Soc. 52 1087-1091
[8]  
Bryce R.A.(1986)The Erdős-Ko-Rado theorem for vector spaces J. Comb. Theory, Ser. A 43 228-236
[9]  
Fedri V.(1995)A condition for matchability in hypergraphs Graphs and Combinatorics 11 245-248
[10]  
Serena L.(2001)A note on vertex list colouring Combin. Probab. Comput. 10 345-347