Homotopy of ends and boundaries of CAT(0) groups

被引:0
作者
G. Conner
M. Mihalik
S. Tschantz
机构
[1] Brigham Young University,Department of Mathematics
[2] Vanderbilt University,Department of Mathematics
来源
Geometriae Dedicata | 2006年 / 120卷
关键词
CAT(0) group; Hyperbolic group; Boundary of a group; Amalgamated product of groups; Cayley complex of a group presentation; -connectedness at infinity; Semi-direct product; 20F65; 20F67; 20F69; 57M07; 57M10;
D O I
暂无
中图分类号
学科分类号
摘要
For n  ≥  0, we exhibit CAT(0) groups that are n-connected at infinity, and have boundary which is (n − 1)-connected, but this boundary has non-trivial nth-homotopy group. In particular, we construct 1-ended CAT(0) groups that are simply connected at infinity, but have a boundary with non-trivial fundamental group. Our base examples are 1-ended CAT(0) groups that have non-path connected boundaries. In particular, we show all parabolic semidirect products of the free group of rank 2 and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathbb{Z}$$\end{document} have a non-path connected boundary.
引用
收藏
页码:1 / 17
页数:16
相关论文
共 25 条
  • [1] Brady T.(1995)Complexes of non-positive curvature for extensions of Topol. Appl. 63 267-275
  • [2] Bestvina M.(1992) by J. Differential Geom. 35 85-101
  • [3] Feighn M.(2003)A combination theorem for negatively curved groups Topol. Appl. 129 73-78
  • [4] Conner G.R.(2000)The fundamental group of a visual boundary versus the fundamental group at infinity Topology 39 549-556
  • [5] Fischer H.(1991)Spaces with nonpositive curvaturre and their ideal boundaries Topol. Appl. 41 213-233
  • [6] Croke C.B.(1996)Empty components in strong shape theory Topology 35 655-669
  • [7] Kleiner B.(1994)The fundamental group at infinity Proc. Amer. Math. Soc. 121 999-1002
  • [8] Geoghegan R.(1982)The automorphism group of a free group is not a CAT(0) group J. Pure Appl. Alg. 23 233-242
  • [9] Krasinkiewicz J.(1974)End invariants of amalgamated free products Proc. Cambridge Philos. Soc. 75 165-173
  • [10] Geoghegan R.(1999)Manifolds of homotopy type J. London Math. Soc. 60 757-770