Weighted Approximation by Analogues of Bernstein Operators for Rational Functions

被引:0
作者
A. B. Dikmen
A. Lukashov
机构
[1] Istanbul University,Department of Engineering Science
[2] Saratov State University,Department of Mathematics and Mechanics
[3] Fatih University,Department of Mathematics
来源
Acta Mathematica Hungarica | 2014年 / 143卷
关键词
Videnskii operator; weighted approximation; 41A35; 41A36;
D O I
暂无
中图分类号
学科分类号
摘要
Weighted modifications of generalized Bernstein operators in rational functions (Videnskii operators) are introduced. Their convergence in weighted spaces is studied.
引用
收藏
页码:439 / 452
页数:13
相关论文
共 18 条
  • [1] Aldaz J.M.(2010)Optimality of generalized Bernstein operators J. Approx. Theory 162 1407-1416
  • [2] Render H.(2013)On some convergence criteria for nets of positive operators on continuous function spaces J. Math. Anal. Appl., 398 542-552
  • [3] Altomare F.(2004)Weighted approximation of functions with endpoint or inner singularities by Bernstein operators Acta Math. Hungar. 103 19-41
  • [4] Della Vecchia B.(2004)Weighted approximation of functions on the real line by Bernstein polynomials J. Approx. Theory 127 223-239
  • [5] Mastroianni G.(2003)Pointwise weighted approximation by Bernstein operators Acta Math. Hungar. 101 293-311
  • [6] Szabados J.(1966)The Lototsky transform and Bernstein polynomials Canad. J. Math., 18 89-91
  • [7] Della Vecchia B.(2006)On the Lupas Rocky Mountain J. Math. 36 1615-1629
  • [8] Mastroianni G.(2012)-analogue of the Bernstein polynomials J. Math. Anal. Appl. 385 1179-1183
  • [9] Szabados J.(1990)The complete asymptotic expansion for Bernstein operators J. Soviet Math. 48 130-144
  • [10] Guo S.(1994)Some new investigations on approximation by linear positive operators Optimization, 30 345-357