Homogeneous Spaces with Sections

被引:0
作者
Andreas Kollross
Evangelia Samiou
机构
[1] Universität Augsburg,Institut für Mathematik
[2] University of Cyprus,Department of Mathematics and Statistics
来源
manuscripta mathematica | 2005年 / 116卷
关键词
Riemannian Manifold; Number Theory; Algebraic Geometry; Homogeneous Space; Topological Group;
D O I
暂无
中图分类号
学科分类号
摘要
We study homogeneous Riemannian manifolds all of whose geodesics can be mapped by some isometry into a fixed homogeneous, connected, totally geodesic submanifold, called section. We show that these spaces are locally symmetric if the section is two-dimensional and give non-symmetric counterexamples with higher-dimensional sections.
引用
收藏
页码:115 / 123
页数:8
相关论文
共 14 条
  • [1] Dadok J.(1985)Polar coordinates induced by actions of compact Lie groups Trans. Am. Math. Soc. 288 125-137
  • [2] Damek E.(1987)The geometry of a semi-direct extension of a Heisenberg type nilpotent group Colloq. Math. 53 255-268
  • [3] Eschenburg J.-H.(1998)Unique decomposition of Riemannian manifolds Proc. Am. Math. Soc. 126 3075-3078
  • [4] Heintze E.(1994)Hyperpolar actions and k-flat homogeneous spaces J. Reine Angew. Math. 454 163-179
  • [5] Heintze E.(1981)Riemannian nilmanifolds attached to Clifford modules Geom. Dedicata 11 127-136
  • [6] Palais R.(1962)Homogeneous Riemannian manifolds of negative curvature Bull. Amer. Math. Soc. 68 338-339
  • [7] Terng C.-L.(1987)A general theory of canonical forms Trans. Amer. Math. Soc. 300 771-789
  • [8] Thorbergsson G.(1982)The automorphism group of a composition of quadratic forms Trans. Amer. Math. Soc. 269 403-414
  • [9] Kaplan A.(2000)Flats and symmetry of homogeneous spaces Math. Z. 234 145-162
  • [10] Kobayashi S.(undefined)undefined undefined undefined undefined-undefined