Machine learning in the detection and management of atrial fibrillation

被引:0
作者
Felix K. Wegner
Lucas Plagwitz
Florian Doldi
Christian Ellermann
Kevin Willy
Julian Wolfes
Sarah Sandmann
Julian Varghese
Lars Eckardt
机构
[1] Universitätsklinikum Münster,Klinik für Kardiologie II
[2] Westfälische-Wilhelms-Universität Münster, Rhythmologie
来源
Clinical Research in Cardiology | 2022年 / 111卷
关键词
Deep learning; Neural network; Electrophysiology; Arrhythmia; Artificial intelligence;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
页码:1010 / 1017
页数:7
相关论文
共 289 条
  • [1] Hindricks G(2021)2020 ESC Guidelines for the diagnosis and management of atrial fibrillation developed in collaboration with the European Association of Cardio-Thoracic Surgery (EACTS) Eur Heart J 42 373-498
  • [2] Potpara T(2014)Worldwide epidemiology of atrial fibrillation: a global burden of disease 2010 study Circulation 129 837-847
  • [3] Dagres N(2015)Diagnosis of atrial fibrillation after stroke and transient ischaemic attack: a systematic review and meta-analysis The Lancet Neurology 14 377-387
  • [4] Arbelo E(2021)Predictors of atrial fibrillation development in patients with embolic stroke of undetermined source: an analysis of the RE-SPECT ESUS trial Circulation 144 1738-1746
  • [5] Bax JJ(2021)Subclinical atrial fibrillation: a silent threat with uncertain implications Annu Rev Med 73 355-117
  • [6] Blomström-Lundqvist C(2015)Deep learning in neural networks: an overview Neural Netw 61 85-243
  • [7] Chugh SS(2020)Application of the residue number system to reduce hardware costs of the convolutional neural network implementation Math Comput Simul 177 232-55
  • [8] Havmoeller R(2020)An introductory review of deep learning for prediction models with big data Front Artif Intell 3 4-449
  • [9] Narayanan K(2022)A guide to machine learning for biologists Nat Rev Mol Cell Biol 23 40-444
  • [10] Singh D(2020)Artificial intelligence in medicine: chances and challenges for wide clinical adoption Visc Med 36 443-39