Existence and uniqueness for solutions of mixed stochastic delay differential equations

被引:0
作者
Weiguo Liu
Qianyi Yu
Xinwen Zhang
机构
[1] Guangdong University of Finance and Economics,School of Statistics and Mathematics
[2] Guangzhou College of Commerce,School of Information Technology and Engineering
来源
Research in the Mathematical Sciences | 2021年 / 8卷
关键词
Stochastic delay differential equation; Existence and uniqueness; Brownian motion; Fractional Brownian motion; 41A25; 60G22; 60H10;
D O I
暂无
中图分类号
学科分类号
摘要
We consider a class of one-dimensional mixed stochastic delay differential equations driven by Brownian motions and fractional Brownian motions with Hurst parameter H∈(12,1).\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$H\in (\frac{1}{2},1).$$\end{document} A existence and uniqueness result is proved by using a contraction principle and some priori estimations. Some previous works are generalized and improved partially.
引用
收藏
相关论文
共 34 条
  • [1] Besalú M(2012)Stochastic delay equations with non-negativity constraints driven by fractional Brownian motion Bernoulli 18 24-45
  • [2] Rovira C(2001)Mixed fractional Brownian motion Bernoulli 7 913-934
  • [3] Cheridito P(2010)Convergence of delay differential equations driven by fractional Brownian moition J. Evol. Equ. 10 761-783
  • [4] Ferrante M(2014)Global uniqueness result for functional differential equations driven by a Wiener process and fractional Brownian motion Int. J. Anal. Appl. 4 107-121
  • [5] Rovira C(2008)Stochastic differential equations driven by fractional Brownian motion and standard Brownian motion Stoch. Anal. Appl. 26 1053-1075
  • [6] Guendouzi T(2013)A multiparameter Garsia-Rodemich-Rumsey inequality and some applications Stoch. Process. Appl. 123 3359-3377
  • [7] Idrissi S(2002)The existence and uniqueness of the solution of an integral equation driven by a Stoch. Process. Appl. 98 289-315
  • [8] Guerra J(1995)-semimartingale of special type Stoch. Stoch. Rep. 55 121-140
  • [9] Nualart D(2017)Stochastic analysis of fractional Brownian motions Commun. Stat. Theory Methods 46 7427-7443
  • [10] Hu YZ(2011)Modified Euler approximation of stochastic differential equation driven by Brownian motion and fractional Brownian motion Comput. Math. Appl. 62 1166-1180