Cyclic codes over the ring F2+uF2+vF2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_2+uF_2+vF_2$$\end{document}

被引:0
作者
Karim Samei
Mohammad Reza Alimoradi
机构
[1] Bu-Ali Sina university,Department of Mathematics
关键词
Frobenius ring; Optimal codes; Quantum codes; Gray map; 94B15;
D O I
10.1007/s40314-017-0460-y
中图分类号
学科分类号
摘要
In this paper, we study linear and cyclic codes over the ring F2+uF2+vF2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_2+uF_2+vF_2$$\end{document}. The ring F2+uF2+vF2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_2+uF_2+vF_2$$\end{document} is the smallest non-Frobenius ring. We characterize the structure of cyclic codes over the ring R=F2+uF2+vF2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$R=F_2+uF_2+vF_2$$\end{document} using of the work Abualrub and Saip (Des Codes Cryptogr 42:273–287, 2007). We study the rank and dual of cyclic codes of odd length over this ring. Specially, we show that the equation |C||C⊥|=|R|n\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|C||C^\bot |= |R|^n$$\end{document} does not hold in general for a cyclic code C of length n over this ring. We also obtain some optimal binary codes as the images of cyclic codes over the ring F2+uF2+vF2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_2+uF_2+vF_2$$\end{document} under a Gray map, which maps Lee weights to Hamming weights. Finally, we give a condition for cyclic codes over R that contains its dual and find quantum codes over F2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_2$$\end{document} from cyclic codes over the ring F2+uF2+vF2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$F_2+uF_2+vF_2$$\end{document}.
引用
收藏
页码:2489 / 2502
页数:13
相关论文
共 21 条
[1]  
Abualrub T(2007)Cyclic codes over the rings Des Codes Cryptogr 42 273-287
[2]  
Saip I(1999) and IEEE Trans Inf Theory 44 1250-1255
[3]  
Bonnecaze A(2004)Cyclic codes and self-dual codes over IEEE Trans Inf Theory 50 1728-1744
[4]  
Udaya P(2001)Cyclic and negacyclic codes over finite chain rings IEEE Trans Inf Theory 47 400-404
[5]  
Dinh HQ(2010)Maximum distance codes over rings of order Finite Fields Appl 16 14-26
[6]  
López-Permouth SR(2004)Self-dual codes over commutative Frobenius rings Int J Quantum Inf 2 55-64
[7]  
Dougherty ST(1999)On optimal quantum codes IEEE Trans Inf Theory 45 2522-2524
[8]  
Shiromoto K(2006)Gray isometries for finite chain rings and a nonlinear ternary Int J Pure Appl Math 3 319-335
[9]  
Dougherty ST(1999) code IEEE Trans Inf Theory 45 2527-2532
[10]  
Kim J(1999)Group rings and rings of matrices Am J Math 121 555-575