Optimal quaternary (r,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,\delta )$$\end{document}-locally recoverable codes: their structures and complete classification

被引:0
作者
Li Xu
Zhengchun Zhou
Jun Zhang
Sihem Mesnager
机构
[1] Southwest Jiaotong University,School of Mathematics
[2] Capital Normal University,School of Mathematical Sciences
[3] University of Paris VIII,Department of Mathematics
[4] University of Paris XIII,undefined
[5] CNRS,undefined
[6] UMR 7539 LAGA,undefined
[7] Sorbonne Paris Cité,undefined
[8] Telecom Paris,undefined
[9] Polytechnic Institute of Paris,undefined
关键词
Distributed storage system; Linear code; Locally repairable code; -LRC; Singleton-like bound; 94B05; 94B15; 94B25; 05B05;
D O I
10.1007/s10623-022-01165-6
中图分类号
学科分类号
摘要
Locally recoverable codes (LRCs) have been introduced as a family of erasure codes that support the repair of a failed storage node by contacting a small number of other nodes in the cluster. Boosted by their applications in distributed storage, LRCs have attracted a lot of attention in recent literature since the concept of codes with locality r was introduced by Gopalan et al. in 2012. Aiming to recover the data from several concurrent node failures, the concept of r-locality was later generalized as (r,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r, \delta )$$\end{document}-locality by Prakash et al. An (r,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r, \delta )$$\end{document}-LRCs in which every code symbol has (r,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r, \delta )$$\end{document}-locality is said to be optimal if it achieves the Singleton-like bound with equality. In present paper, we are interested in optimal (r,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r, \delta )$$\end{document}-LRCs over small fields, more precisely, over quaternary field. We study their parity-check matrices or generator matrices, using the properties of projective space. The classification of optimal quaternary (r,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,\delta )$$\end{document}-LRCs and their explicit code constructions are proposed by examining all possible parameters.
引用
收藏
页码:1495 / 1526
页数:31
相关论文
共 54 条
[31]  
Dimakis A(undefined)undefined undefined undefined undefined-undefined
[32]  
Rawat A(undefined)undefined undefined undefined undefined-undefined
[33]  
Koyluoglu O(undefined)undefined undefined undefined undefined-undefined
[34]  
Silberstein N(undefined)undefined undefined undefined undefined-undefined
[35]  
Vishwanath S(undefined)undefined undefined undefined undefined-undefined
[36]  
Song W(undefined)undefined undefined undefined undefined-undefined
[37]  
Dau S(undefined)undefined undefined undefined undefined-undefined
[38]  
Yuen C(undefined)undefined undefined undefined undefined-undefined
[39]  
Li T(undefined)undefined undefined undefined undefined-undefined
[40]  
Tamo I(undefined)undefined undefined undefined undefined-undefined