Optimal quaternary (r,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,\delta )$$\end{document}-locally recoverable codes: their structures and complete classification

被引:0
作者
Li Xu
Zhengchun Zhou
Jun Zhang
Sihem Mesnager
机构
[1] Southwest Jiaotong University,School of Mathematics
[2] Capital Normal University,School of Mathematical Sciences
[3] University of Paris VIII,Department of Mathematics
[4] University of Paris XIII,undefined
[5] CNRS,undefined
[6] UMR 7539 LAGA,undefined
[7] Sorbonne Paris Cité,undefined
[8] Telecom Paris,undefined
[9] Polytechnic Institute of Paris,undefined
关键词
Distributed storage system; Linear code; Locally repairable code; -LRC; Singleton-like bound; 94B05; 94B15; 94B25; 05B05;
D O I
10.1007/s10623-022-01165-6
中图分类号
学科分类号
摘要
Locally recoverable codes (LRCs) have been introduced as a family of erasure codes that support the repair of a failed storage node by contacting a small number of other nodes in the cluster. Boosted by their applications in distributed storage, LRCs have attracted a lot of attention in recent literature since the concept of codes with locality r was introduced by Gopalan et al. in 2012. Aiming to recover the data from several concurrent node failures, the concept of r-locality was later generalized as (r,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r, \delta )$$\end{document}-locality by Prakash et al. An (r,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r, \delta )$$\end{document}-LRCs in which every code symbol has (r,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r, \delta )$$\end{document}-locality is said to be optimal if it achieves the Singleton-like bound with equality. In present paper, we are interested in optimal (r,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r, \delta )$$\end{document}-LRCs over small fields, more precisely, over quaternary field. We study their parity-check matrices or generator matrices, using the properties of projective space. The classification of optimal quaternary (r,δ)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(r,\delta )$$\end{document}-LRCs and their explicit code constructions are proposed by examining all possible parameters.
引用
收藏
页码:1495 / 1526
页数:31
相关论文
共 54 条
[1]  
Cai H(2019)On optimal locally repairable codes with multiple disjoint repair sets IEEE Trans. Inform. Theory 66 2402-2416
[2]  
Miao Y(2018)Constructions of optimal cyclic IEEE Trans. Inform. Theory 64 2499-2511
[3]  
Schwartz M(2012) locally repairable codes IEEE Trans. Inform. Theory 58 6925-6934
[4]  
Tang X(2019)On the locality of codeword symbols IEEE Trans. Inform. Theory 65 3662-3670
[5]  
Chen B(2020)How long can optimal locally repairable codes be? IEEE Trans. Inform. Theory 66 7465-7474
[6]  
Xia S(2019)Bounds and constructions of locally repairable codes: parity-check matrix approach IEEE Trans. Inform. Theory 65 4658-4663
[7]  
Hao J(2019)Explicit construction of optimal locally recoverable codes of distance 5 and 6 via binary constant weight codes IEEE Trans. Inform. Theory 66 202-209
[8]  
Fu F(2014)Constructions of locally repairable codes with multiple recovering sets via rational function fields IEEE Trans. Inform. Theory 60 4637-4660
[9]  
Gopalan P(2014)Codes with local regeneration and erasure correction IEEE Trans. Inform. Theory 60 5843-5855
[10]  
Huang C(2014)Locally repairable codes IEEE Trans. Inform. Theory 60 212-236