On (3, r)-Choosability of Some Planar Graphs

被引:0
作者
Heng Li
Jianfeng Hou
Hongguo Zhu
机构
[1] Fuzhou University,Center for Discrete Mathematics
[2] Zhejiang Normal University,Department of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2022年 / 45卷
关键词
Choosability with union separation; Planar graph; Chorded cycle; Triangle; 05C10; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
There are many refinements of list coloring, one of which is the choosability with union separation. Let k, s be positive integers and let G be a graph. A (k,k+s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,k+s)$$\end{document}-list assignment of G is a mapping L assigning each vertex v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(G)$$\end{document} a list of colors L(v) such that |L(v)|≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|L(v)|\ge k$$\end{document} for each vertex v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(G)$$\end{document}, and |L(u)∪L(v)|≥k+s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|L(u)\cup L(v)|\ge k+s$$\end{document} for each edge uv∈E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$uv\in E(G)$$\end{document}. If for each (k,k+s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,k+s)$$\end{document}-list assignment L of G, G admits a proper coloring φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} such that φ(v)∈L(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (v)\in L(v)$$\end{document} for each v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(G)$$\end{document}, then G is (k,k+s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,k+s)$$\end{document}-choosable. Let G be a planar graph. In this paper, we prove: (1) if G contains no chorded 4-cycle, then G is (3, 8)-choosable; (2) if G contains neither intersecting triangles nor intersecting 4-cycles, then G is (3, 6)-choosable.
引用
收藏
页码:851 / 867
页数:16
相关论文
共 50 条
[21]   Choosability of the square of planar subcubic graphs with large girth [J].
Havet, F. .
DISCRETE MATHEMATICS, 2009, 309 (11) :3553-3563
[22]   Edge choosability of planar graphs without short cycles [J].
WANG Weifan School of Mathematics and Physics .
Science China Mathematics, 2005, (11) :1531-1544
[23]   Neighbor sum distinguishing total choosability of planar graphs [J].
Cunquan Qu ;
Guanghui Wang ;
Guiying Yan ;
Xiaowei Yu .
Journal of Combinatorial Optimization, 2016, 32 :906-916
[24]   Edge choosability of planar graphs without short cycles [J].
Weifan Wang .
Science in China Series A: Mathematics, 2005, 48 :1531-1544
[25]   Injective choosability of subcubic planar graphs with girth 6 [J].
Brimkov, Boris ;
Edmond, Jennifer ;
Lazar, Robert ;
Lidicky, Bernard ;
Messerschmidt, Kacy ;
Walker, Shanise .
DISCRETE MATHEMATICS, 2017, 340 (10) :2538-2549
[26]   On structure of some plane graphs with application to choosability [J].
Lam, PCB ;
Shiu, WC ;
Xu, BG .
JOURNAL OF COMBINATORIAL THEORY SERIES B, 2001, 82 (02) :285-296
[27]   ACYCLIC 3-CHOOSABILITY OF PLANAR GRAPHS WITH NO CYCLES OF LENGTH FROM 4 TO 11 [J].
Borodin, O., V ;
Ivanova, A. O. .
SIBERIAN ELECTRONIC MATHEMATICAL REPORTS-SIBIRSKIE ELEKTRONNYE MATEMATICHESKIE IZVESTIYA, 2010, 7 :275-283
[28]   NSD Total Choosability of Planar Graphs with Girth at Least Four [J].
Han, Xue ;
Wang, Jihui ;
Qiu, Baojian .
PROCEEDINGS OF 2016 INTERNATIONAL CONFERENCE ON MODELING, SIMULATION AND OPTIMIZATION TECHNOLOGIES AND APPLICATIONS (MSOTA2016), 2016, 58 :78-80
[29]   IMPROPER CHOOSABILITY OF PLANAR GRAPHS WITHOUT 4-CYCLES [J].
Wang, Yingqian ;
Xu, Lingji .
SIAM JOURNAL ON DISCRETE MATHEMATICS, 2013, 27 (04) :2029-2037
[30]   (4,2)-Choosability of Planar Graphs with Forbidden Structures [J].
Berikkyzy, Zhanar ;
Cox, Christopher ;
Dairyko, Michael ;
Hogenson, Kirsten ;
Kumbhat, Mohit ;
Lidicky, Bernard ;
Messerschmidt, Kacy ;
Moss, Kevin ;
Nowak, Kathleen ;
Palmowski, Kevin F. ;
Stolee, Derrick .
GRAPHS AND COMBINATORICS, 2017, 33 (04) :751-787