On (3, r)-Choosability of Some Planar Graphs

被引:0
|
作者
Heng Li
Jianfeng Hou
Hongguo Zhu
机构
[1] Fuzhou University,Center for Discrete Mathematics
[2] Zhejiang Normal University,Department of Mathematics
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2022年 / 45卷
关键词
Choosability with union separation; Planar graph; Chorded cycle; Triangle; 05C10; 05C15;
D O I
暂无
中图分类号
学科分类号
摘要
There are many refinements of list coloring, one of which is the choosability with union separation. Let k, s be positive integers and let G be a graph. A (k,k+s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,k+s)$$\end{document}-list assignment of G is a mapping L assigning each vertex v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(G)$$\end{document} a list of colors L(v) such that |L(v)|≥k\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|L(v)|\ge k$$\end{document} for each vertex v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(G)$$\end{document}, and |L(u)∪L(v)|≥k+s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$|L(u)\cup L(v)|\ge k+s$$\end{document} for each edge uv∈E(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$uv\in E(G)$$\end{document}. If for each (k,k+s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,k+s)$$\end{document}-list assignment L of G, G admits a proper coloring φ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi $$\end{document} such that φ(v)∈L(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\varphi (v)\in L(v)$$\end{document} for each v∈V(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(G)$$\end{document}, then G is (k,k+s)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$(k,k+s)$$\end{document}-choosable. Let G be a planar graph. In this paper, we prove: (1) if G contains no chorded 4-cycle, then G is (3, 8)-choosable; (2) if G contains neither intersecting triangles nor intersecting 4-cycles, then G is (3, 6)-choosable.
引用
收藏
页码:851 / 867
页数:16
相关论文
共 50 条
  • [1] On (3, r)-Choosability of Some Planar Graphs
    Li, Heng
    Hou, Jianfeng
    Zhu, Hongguo
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2022, 45 (02) : 851 - 867
  • [2] A note on 3-choosability of planar graphs
    Wang, Yingqian
    Lu, Huajing
    Chen, Ming
    INFORMATION PROCESSING LETTERS, 2008, 105 (05) : 206 - 211
  • [3] Minimum choosability of planar graphs
    Huijuan Wang
    Bin Liu
    Ling Gai
    Hongwei Du
    Jianliang Wu
    Journal of Combinatorial Optimization, 2018, 36 : 13 - 22
  • [4] Minimum choosability of planar graphs
    Wang, Huijuan
    Liu, Bin
    Gai, Ling
    Du, Hongwei
    Wu, Jianliang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2018, 36 (01) : 13 - 22
  • [5] Choosability and edge choosability of planar graphs without intersecting triangles
    Wang, WF
    Lih, KW
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 2002, 15 (04) : 538 - 545
  • [6] Choosability and edge choosability of planar graphs without five cycles
    Wang, WF
    Lih, KW
    APPLIED MATHEMATICS LETTERS, 2002, 15 (05) : 561 - 565
  • [7] On 3-choosability of planar graphs without certain cycles
    Zhang, Haihui
    Sun, Zhiren
    INFORMATION PROCESSING LETTERS, 2008, 107 (3-4) : 102 - 106
  • [8] A note on the minimum number of choosability of planar graphs
    Huijuan Wang
    Lidong Wu
    Xin Zhang
    Weili Wu
    Bin Liu
    Journal of Combinatorial Optimization, 2016, 31 : 1013 - 1022
  • [9] Acyclic 4-choosability of planar graphs
    Chen, Min
    Raspaud, Andre
    Roussel, Nicolas
    Zhu, Xuding
    DISCRETE MATHEMATICS, 2011, 311 (01) : 92 - 101
  • [10] A note on 3-choosability of planar graphs without certain cycles
    Zhang, L
    Wu, BD
    DISCRETE MATHEMATICS, 2005, 297 (1-3) : 206 - 209