Optimal quantum thermometry by dephasing

被引:0
作者
Dong Xie
Chunling Xu
An Min Wang
机构
[1] Guilin University of Aerospace Technology,Faculty of Science
[2] University of Science and Technology of China,Department of Modern Physics
来源
Quantum Information Processing | 2017年 / 16卷
关键词
Quantum thermometry; Dephasing; Optimal precision; Ramsey measurement;
D O I
暂无
中图分类号
学科分类号
摘要
Decoherence often happens in the quantum world. We try to utilize quantum dephasing to build an optimal thermometry. By calculating the Cramér–Rao bound, we prove that the Ramsey measurement is the optimal way to measure the temperature for uncorrelated probe particles. Using the optimal measurement, the metrological equivalence of product and maximally entangled state of initial quantum probes always holds. Contrary to frequency estimation, the optimal temperature estimation can be obtained in the case ν<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu <1$$\end{document}, not ν>1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu >1$$\end{document}. For the general Zeno regime (ν=2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu =2$$\end{document}), uncorrelated product states are the optimal choice in typical Ramsey spectroscopy setup. In order to improve the resolution of temperature, one should reduce the characteristic time of dephasing factor γ(t)∝t2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\gamma (t)\propto t^2$$\end{document}, and the power ν<1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\nu <1$$\end{document} appears after it. Under the imperfect condition, maximally entangled state can perform better than product state. Finally, we investigate other environmental influence on the measurement precision of temperature. Based on it, we define a new way to measure non-Markovian effect.
引用
收藏
相关论文
共 152 条
  • [1] Kucsko G(2013)Nanometre-scale thermometry in a living cell Nature (London) 500 54-2084
  • [2] Maurer P(2002)Nanotechnology: carbon nanothermometer containing gallium Nature 415 599-undefined
  • [3] Yao N(2009)Spin gradient thermometry for ultracold atoms in optical lattices Phys. Rev. Lett. 103 245301-undefined
  • [4] Kubo M(2013)High-precision nanoscale temperature sensing using single defects in diamond Nano Lett. 13 2738-undefined
  • [5] Noh H(2015)Individual quantum probes for optimal thermometry Phys. Rev. Lett. 114 220405-undefined
  • [6] Lo P(2014)Experimental implementation of a nonthermalizing quantum thermometer Quantum Inf. Process. 14 37-undefined
  • [7] Park H(2015)Single-qubit thermometry Phys. Rev. A 91 012331-undefined
  • [8] Lukin M(2010)Quantum limits of thermometry Phys. Rev. A 82 011611-undefined
  • [9] Gao Y(2005)Decoherence, the measurement problem, and interpretations of quantum mechanics Rev. Mod. Phys. 76 1267-undefined
  • [10] Bando Y(1922)The mathematical foundations of theoretical statistics Phil. Trans. R. Soc. A 222 309-undefined