Approximation properties of bivariate complex q-Bernstein polynomials in the case q > 1

被引:0
作者
Nazim I. Mahmudov
机构
[1] Eastern Mediterranean University,Department of Mathematics
来源
Czechoslovak Mathematical Journal | 2012年 / 62卷
关键词
-Bernstein polynomials; modulus of continuity; Voronovskaja type theorem; 41A35; 33D15; 41A10;
D O I
暂无
中图分类号
学科分类号
摘要
In the paper, we discuss convergence properties and Voronovskaja type theorem for bivariate q-Bernstein polynomials for a function analytic in the polydisc \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${D_{{R_1}}} \times {D_{{R_2}}} = \{ z \in C:\left| z \right| < {R_1}\} \times \{ z \in C:\left| z \right| < {R_1}\} $$\end{document} for arbitrary fixed q > 1. We give quantitative Voronovskaja type estimates for the bivariate q-Bernstein polynomials for q > 1. In the univariate case the similar results were obtained by S.Ostrovska: q-Bernstein polynomials and their iterates. J. Approximation Theory 123 (2003), 232–255, and S.G.Gal: Approximation by Complex Bernstein and Convolution Type Operators. Series on Concrete and Applicable Mathematics 8. World Scientific, New York, 2009.
引用
收藏
页码:557 / 566
页数:9
相关论文
共 10 条
[1]  
Butzer P. L.(1953)On two-dimensional Bernstein polynomials Can. J. Math. 5 107-113
[2]  
Hildebrandt T.H.(1933)On linear functional operations and the moment problem for a finite interval in one or several dimensions Ann.Math. 34 317-328
[3]  
Schoenberg I. J.(2009)Korovkin-type theorems and applications Cent. Eur. J. Math. 7 348-356
[4]  
Mahmudov N. I.(2003)-Bernstein polynomials and their iterates J. Approximation Theory 123 232-255
[5]  
Ostrovska S.(2008)The sharpness of convergence results for Czech. Math. J. 58 1195-1206
[6]  
Ostrovska S.(1997)-Bernstein polynomials in the case Ann. Numer. Math. 4 511-518
[7]  
Phillips G.M.(2008) > 1 J. Math. Anal. Appl. 337 744-750
[8]  
Wang H.(2009)Bernstein polynomials based on the J. Math. Anal. Appl. 357 137-141
[9]  
Wu X.(undefined)-integers undefined undefined undefined-undefined
[10]  
Wu Z.(undefined)Saturation of convergence for undefined undefined undefined-undefined