A Quadratic Algorithm for Finding Next-to-Shortest Paths in Graphs

被引:0
作者
Kuo-Hua Kao
Jou-Ming Chang
Yue-Li Wang
Justie Su-Tzu Juan
机构
[1] National Chi Nan University,Department of Computer Science and Information Engineering
[2] National Taipei College of Business,Institute of Information Science and Management
[3] National Taiwan University of Science and Technology,Department of Information Management
来源
Algorithmica | 2011年 / 61卷
关键词
Strictly-second-shortest paths; Next-to-shortest paths; Graph algorithms;
D O I
暂无
中图分类号
学科分类号
摘要
Given an edge-weighted undirected graph G and two prescribed vertices u and v, a next-to-shortest (u,v)-path is a shortest (u,v)-path amongst all (u,v)-paths having length strictly greater than the length of a shortest (u,v)-path. In this paper, we deal with the problem of computing a next-to-shortest (u,v)-path. We propose an \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{O}}(n^{2})$\end{document} time algorithm for solving this problem, which significantly improves the bound of a previous one in \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}${\mathcal{O}}(n^{3})$\end{document} time where n is the number of vertices in G.
引用
收藏
页码:402 / 418
页数:16
相关论文
共 14 条
  • [1] Barman S.C.(2007)An efficient algorithm to find next-to-shortest path on trapezoid graphs Adv. Appl. Math. Anal. 2 97-107
  • [2] Mondal S.(1959)A note on two problems in connection with graphs Numer. Math. 1 269-271
  • [3] Pal M.(2004)Finding next-to-shortest paths in a graph Inf. Process. Lett. 92 117-119
  • [4] Dijkstra E.W.(1997)Computing strictly-second shortest paths Inf. Process. Lett. 63 177-181
  • [5] Krasiko I.(2006)Improved algorithm for finding next-to-shortest paths Inf. Process. Lett. 99 192-194
  • [6] Noble S.D.(2006)A sequential algorithm to solve next-to-shortest path problem on circular-arc graphs J. Phys. Sci. 10 201-217
  • [7] Lalgudi K.N.(1974)Finding dominators in directed graphs SIAM J. Comput. 3 62-89
  • [8] Papaefthymiou M.C.(undefined)undefined undefined undefined undefined-undefined
  • [9] Li S.(undefined)undefined undefined undefined undefined-undefined
  • [10] Sun G.(undefined)undefined undefined undefined undefined-undefined