The Ricci operator of completely solvable metric lie algebras

被引:0
作者
Chebarykov M.S. [1 ]
Nikonorov Y.G. [2 ]
机构
[1] Rubtsovsk Industrial Institute, Rubtsovsk
[2] Southern Mathematical Institute of the Vladikavkaz Scientific Center of the RAS, Vladikavkaz
关键词
completely solvable Lie algebras; left-invariant Riemannian metrics; Lie group and algebras; nonhomogeneous Riemannian manifolds; Ricci curvature;
D O I
10.3103/S1055134414010039
中图分类号
学科分类号
摘要
We study the Ricci curvature of completely solvablemetric Lie algebras. In particular,we prove that the Ricci operator of every completely solvable nonunimodular or every noncommutative nilpotent metric Lie algebra has at least two negative eigenvalues. © 2014 Allerton Press, Inc.
引用
收藏
页码:18 / 25
页数:7
相关论文
共 16 条
  • [1] Alekseevskii D.V., Homogeneous Riemannian spaces of negative curvature, Mat. Sb. (N.S.), 96, 138, pp. 93-117, (1975)
  • [2] Alekseevskii D.V., Kimel'fel'd B.N., Structure of homogeneous Riemann spaces with zero Ricci curvature, Funkcional. Anal. I Prilozhen., 9, 2, pp. 5-11, (1975)
  • [3] Balaschenko V.V., Nikonorov Y.G., Rodionov E.D., Slavskii V.V., Homogeneous Spaces: Theory and Applications, (2008)
  • [4] Besse A.L., Einstein Manifolds, (1987)
  • [5] Chebarykov M.S., On the Ricci curvature of nonunimodular solvable metric Lie algebras of small dimension, Mat. Tr., 13, 1, pp. 186-211, (2010)
  • [6] Miatello I.D., Ricci curvature of left-invariant metrics on solvable unimodular Lie groups, Math. Z. Bf, 180, 2, pp. 257-263, (1982)
  • [7] Gantmakher F.R., Theory of Matrices, (1988)
  • [8] Horn R.A., Johnson C.R., Matrix Analysis, (1985)
  • [9] Jensen G., The scalar curvature of left-invariant Riemannian metrics, Indiana Univ. Math. J., 20, pp. 1125-1144, (1970)
  • [10] Kremlev A.G., The signature of the Ricci curvature of left-invariant Riemannian metrics on five-dimensional nilpotent Lie groups, Sib. Èlektron. Mat. Izv., 6, pp. 326-339, (2009)