On Z2Z4[ξ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{2}{\mathbb {Z}}_{4}[\xi ]$$\end{document}-skew cyclic codes

被引:2
|
作者
Fatmanur Gursoy
Ismail Aydogdu
机构
[1] Yildiz Technical University,Department of Mathematics
关键词
-additive codes; Skew cyclic codes; -skew cyclic codes; Gray map; Homogeneous weight; 94B05; 94B60;
D O I
10.1007/s12190-021-01580-3
中图分类号
学科分类号
摘要
Z2Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2{\mathbb {Z}}_{4}$$\end{document}-additive codes have been defined as a subgroup of Z2r×Z4s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2^{r}\times {\mathbb {Z}}_4^{s}$$\end{document} in [6] where Z2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2$$\end{document}, Z4\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{4}$$\end{document} are the rings of integers modulo 2 and 4 respectively and r and s are positive integers. In this study, we define a family of codes over the set Z2[ξ¯]r×Z4[ξ]s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2[{\bar{\xi }}]^{r}\times {\mathbb {Z}}_4[\xi ]^{s}$$\end{document} where ξ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\xi $$\end{document} is a root of a monic basic primitive polynomial in Z4[x]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_{4}[x]$$\end{document}. We give the standard form of the generator and parity-check matrices of codes over Z2[ξ¯]r×Z4[ξ]s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}_2[{\bar{\xi }}]^{r}\times {\mathbb {Z}}_4[\xi ]^{s}$$\end{document} and also we introduce skew cyclic codes and their spanning sets. Moreover, we study the Gray images of codes over both Z4[ξ]\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}}_4[\xi ]$$\end{document} and Z2[ξ¯]r×Z4[ξ]s\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${{\mathbb {Z}}_{2}[{\bar{\xi }}]^r\times {{\mathbb {Z}}_{4}[\xi ]^s}}$$\end{document} with respect to homogeneous weight and give the necessary and sufficient condition for their Gray images to be a linear code. We further present some examples of optimal codes which are actually Gray images of skew cyclic codes.
引用
收藏
页码:1613 / 1633
页数:20
相关论文
共 50 条