A Thermodynamic Formalism for Continuous Time Markov Chains with Values on the Bernoulli Space: Entropy, Pressure and Large Deviations

被引:0
作者
Artur Lopes
Adriana Neumann
Philippe Thieullen
机构
[1] UFRGS,Instituto de Matemática
[2] Université Bordeaux 1,Institut de Mathématiques
来源
Journal of Statistical Physics | 2013年 / 152卷
关键词
Continuous time Markov chain; Perron Theorem; Gibbs state; Ruelle Operator; Equilibrium state; Entropy; Pressure; Large deviations; Deviation function;
D O I
暂无
中图分类号
学科分类号
摘要
Through this paper we analyze the ergodic properties of continuous time Markov chains with values on the one-dimensional spin lattice \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{1,\dots,d\}^{{\mathbb{N}}}$\end{document} (also known as the Bernoulli space). Initially, we consider as the infinitesimal generator the operator [inline-graphic not available: see fulltext], where [inline-graphic not available: see fulltext] is a discrete time Ruelle operator (transfer operator), and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A:\{1,\dots,d\}^{{\mathbb{N}}}\to\mathbb{R}$\end{document} is a given fixed Lipschitz function. The associated continuous time stationary Markov chain will define the a priori probability.
引用
收藏
页码:894 / 933
页数:39
相关论文
共 37 条
[11]  
Souza R.R.(2000)Principal eigenvalues, topological pressure, and stochastic stability of equilibrium states Stoch. Process. Appl. 85 93-121
[12]  
Baladi V.(1989)Large deviations for Poisson random measures and processes with independent increments J. Math. Phys. 30 2120-2124
[13]  
Smania D.(1990)An analogy of the charge on distribution on Julia sets with the Brownian motion Nonlinearity 3 527-546
[14]  
Berger N.(2009)Entropy and large deviations Bull. Braz. Math. Soc. 40 1-52
[15]  
Kenyon C.(2000)Negative entropy, zero temperature and stationary Markov chains on the interval J. Math. Phys. 41 1598-1615
[16]  
Mossel E.(1995)Analyzing Glauber dynamics by comparison of Markov chains J. Stat. Phys. 81 1007-1019
[17]  
Peres Y.(undefined)On the ergodic properties of Glauber dynamics undefined undefined undefined-undefined
[18]  
Contreras G.(undefined)undefined undefined undefined undefined-undefined
[19]  
Lopes e A.O.(undefined)undefined undefined undefined undefined-undefined
[20]  
Thieullen Ph.(undefined)undefined undefined undefined undefined-undefined