A Thermodynamic Formalism for Continuous Time Markov Chains with Values on the Bernoulli Space: Entropy, Pressure and Large Deviations

被引:0
作者
Artur Lopes
Adriana Neumann
Philippe Thieullen
机构
[1] UFRGS,Instituto de Matemática
[2] Université Bordeaux 1,Institut de Mathématiques
来源
Journal of Statistical Physics | 2013年 / 152卷
关键词
Continuous time Markov chain; Perron Theorem; Gibbs state; Ruelle Operator; Equilibrium state; Entropy; Pressure; Large deviations; Deviation function;
D O I
暂无
中图分类号
学科分类号
摘要
Through this paper we analyze the ergodic properties of continuous time Markov chains with values on the one-dimensional spin lattice \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$\{1,\dots,d\}^{{\mathbb{N}}}$\end{document} (also known as the Bernoulli space). Initially, we consider as the infinitesimal generator the operator [inline-graphic not available: see fulltext], where [inline-graphic not available: see fulltext] is a discrete time Ruelle operator (transfer operator), and \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$A:\{1,\dots,d\}^{{\mathbb{N}}}\to\mathbb{R}$\end{document} is a given fixed Lipschitz function. The associated continuous time stationary Markov chain will define the a priori probability.
引用
收藏
页码:894 / 933
页数:39
相关论文
共 37 条
[1]  
Baraviera A.(2012)Selection of ground states in the zero temperature limit for a one-parameter family of potentials SIAM J. Appl. Dyn. Syst. 11 243-260
[2]  
Leplaideur R.(2010)A Ruelle Operator for continuous time Markov chains São Paulo J. Math. Sci. 4 1-16
[3]  
Lopes A.O.(2011)On the general one dimensional Rev. Math. Phys. 23 1063-1113
[4]  
Baraviera A.(2008) model: positive and zero temperature, selection and non-selection Nonlinearity 21 677-711
[5]  
Exel R.(2005)Linear response formula for piecewise expanding unimodal maps Probab. Theory Relat. Fields 131 311-340
[6]  
Lopes A.(2001)Glauber dynamics on trees and hyperbolic graphs Ergod. Theory Dyn. Syst. 21 1379-1409
[7]  
Baraviera A.T.(1975)Lyapunov minimizing measures for expanding maps of the circle Commun. Pure Appl. Math. 28 1-47
[8]  
Cioletti L.M.(1998)Asymptotic evaluation of certain Markov process expectations for large time I J. Comput. Syst. Sci. 57 2-36
[9]  
Lopes A.(1990)What do we know about the Metropolis algorithm? Tamsui Oxf. J. Manag. Sci. 321 505-524
[10]  
Mohr J.(1990)Large deviations in dynamical systems and stochastic processes Isr. J. Math. 70 1-47