Second Hankel Determinant of Logarithmic Coefficients of Convex and Starlike Functions of Order Alpha

被引:0
作者
Bogumiła Kowalczyk
Adam Lecko
机构
[1] University of Warmia and Mazury in Olsztyn,Department of Complex Analysis, Faculty of Mathematics and Computer Science
来源
Bulletin of the Malaysian Mathematical Sciences Society | 2022年 / 45卷
关键词
Starlike function of order ; Convex function of order ; Carathéodory function; Hankel determinant; Logarithmic coefficient; 30C45; 30C50;
D O I
暂无
中图分类号
学科分类号
摘要
In the present paper, we found sharp bounds of the second Hankel determinant of logarithmic coefficients of starlike and convex functions of order α\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}.
引用
收藏
页码:727 / 740
页数:13
相关论文
共 30 条
  • [1] Ali MF(2018)On logarithmic coefficients of some close-to-convex functions Proc. Am. Math. Soc. 146 1131-1142
  • [2] Vasudevarao A(1907)Über den Variabilitatsbereich der Koeffizienten von Potenzreihen, die gegebene werte nicht annehmen Math. Ann. 64 95-115
  • [3] Carathéodory C(2017)The bound of the Hankel detrminant for strongly starlike functions of order alpha J. Math. Ineq. 11 429-439
  • [4] Cho NE(2019)Sharp bounds of some coefficient functionals over the class of functions convex in the direction of the imaginary axis Bull. Aust. Math. Soc. 100 86-96
  • [5] Kowalczyk B(2007)A general approach to the Fekete–Szegö problem J. Math. Soc. Jpn. 59 707-727
  • [6] Kwon OS(2000)Logarithmic coefficients of univalent functions Ann. Acad. Sci. Fenn. 25 337-350
  • [7] Lecko A(2018)The sharp bound for the Hankel determinant of the third kind for convex functions Bull. Aust. Math. Soc. 97 435-445
  • [8] Sim YJ(2021)Second Hankel determinant of logarithmic coefficients of convex and starlike functions Bull. Aust. Math. Soc. 187 543-563
  • [9] Cho NE(2018)Logarithmic coefficients for certain subclasses of close-to-convex functions Monats. Math. 85 225-230
  • [10] Kowalczyk B(1982)Early coefficients of the inverse of a regular convex function Proc. Am. Math. Soc. 87 251-257