We classify three-dimensional Lorentz homogeneous spaces G/I having a compact manifold locally modeled on them. We prove a completeness result: any compact locally homogeneous Lorentz threefold M is isometric to a quotient of a Lorentz homogeneous space G/I by a discrete subgroup Γ of G acting properly and freely on G/I. Moreover, if I is noncompact, G/I is isometric to a Lie group L endowed with a left invariant Lorentz metric, where L is isomorphic to one of the following Lie groups:
\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\bf R}^3, \widetilde{SL(2, {\bf R})}, He\,is \,{\rm or}\, SOL.$$\end{document}If L is not \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$${\widetilde{SL(2, {\bf R})}}$$\end{document} , then M admits a finite cover which is a quotient of L by a lattice.