Géométries Lorentziennes de dimension 3 : classification et complétude

被引:0
|
作者
Sorin Dumitrescu
Abdelghani Zeghib
机构
[1] Équipe de Topologie et Dynamique,Département de Mathématique d’Orsay
[2] CNRS,undefined
[3] UMPA,undefined
[4] École Normale Supérieure de Lyon,undefined
来源
Geometriae Dedicata | 2010年 / 149卷
关键词
Locally homogenous Lorentz manifolds; Transitive Killing Lie algebras; Completeness of (; )-structures; 53B30; 53C22; 53C50; Variétés lorentziennes localement homogènes; Algèbres de Killing transitives; Complétude géodésique; Complétude des (; )-structures;
D O I
暂无
中图分类号
学科分类号
摘要
We classify three-dimensional Lorentz homogeneous spaces G/I having a compact manifold locally modeled on them. We prove a completeness result: any compact locally homogeneous Lorentz threefold M is isometric to a quotient of a Lorentz homogeneous space G/I by a discrete subgroup Γ of G acting properly and freely on G/I. Moreover, if I is noncompact, G/I is isometric to a Lie group L endowed with a left invariant Lorentz metric, where L is isomorphic to one of the following Lie groups: \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\bf R}^3, \widetilde{SL(2, {\bf R})}, He\,is \,{\rm or}\, SOL.$$\end{document}If L is not \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\widetilde{SL(2, {\bf R})}}$$\end{document} , then M admits a finite cover which is a quotient of L by a lattice.
引用
收藏
页码:243 / 273
页数:30
相关论文
empty
未找到相关数据