This paper investigates the H∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_{\infty }$$\end{document} state estimation problem of continuous-time delayed nonhomogeneous Markov jump systems (NMJSs). To fully consider the nonhomogeneous transition rates (TRs) and state-related vectors, a parameter-dependent Lyapunov–Krasovskii functional (PDLKF) with triple integrals is constructed, in which the integrands in the PDLKF are all time-varying. In order to deal with the derivative of the time-varying integrands, a switched vertices approach is proposed to relax the bound assumptions in the existing works, which leads to more practical results. Based on these ingredients, a corresponding switched estimator approach is proposed to match an H∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_{\infty }$$\end{document} estimator for NMJSs. The designed H∞\documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$H_{\infty }$$\end{document} estimator is related to the switched rule, which is more general than nonswitched estimators in the previous works. Some examples are illustrated to show the effectiveness of the obtained results.