The variational stability of an optimal control problem for Volterra-type equations

被引:0
作者
N. I. Pogodaev
A. A. Tolstonogov
机构
[1] Institute for System Dynamics and Control Theory,
来源
Siberian Mathematical Journal | 2014年 / 55卷
关键词
Γ-convergence; variational stability; optimal control; partial differential equations;
D O I
暂无
中图分类号
学科分类号
摘要
We study the variational stability of an optimal control problem for a Volterra-type nonlinear functional-operator equation. This means that for this optimal control problem (Pɛ) with a parameter ɛ we study how its minimum value min(Pɛ) and its set of minimizers argmin(Pɛ) depend on ɛ. We illustrate the use of the variational stability theorem with a series of particular problems.
引用
收藏
页码:667 / 686
页数:19
相关论文
共 50 条
  • [41] VARIATIONAL STABILITY OF SOME OPTIMAL CONTROL PROBLEMS DESCRIBING HYSTERESIS EFFECTS
    Timoshin, Sergey A.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2014, 52 (04) : 2348 - 2370
  • [42] STABILITY OF THE SOLUTION SET OF QUASI-VARIATIONAL INEQUALITIES AND OPTIMAL CONTROL
    Alphonse, Amal
    Hintermueller, Michael
    Rautenberg, Carlos N.
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 2020, 58 (06) : 3508 - 3532
  • [43] An optimal control model for the Lyapunov system of stability problem
    Xiong, Xiaolin
    Lao, Zhi
    Feng, Zhiguo
    [J]. PROCEEDINGS OF THE 33RD CHINESE CONTROL AND DECISION CONFERENCE (CCDC 2021), 2021, : 3768 - 3771
  • [44] On the stability of the solution in an optimal control problem for a Schrodinger equation
    Subasi, Murat
    Durur, Hulya
    [J]. APPLIED MATHEMATICS AND COMPUTATION, 2014, 249 : 521 - 526
  • [45] Optimal control of continuity equations
    Pogodaev, Nikolay
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2016, 23 (02):
  • [46] Optimal control of continuity equations
    Nikolay Pogodaev
    [J]. Nonlinear Differential Equations and Applications NoDEA, 2016, 23
  • [47] OPTIMAL CONTROL OF SOLUTIONS TO THE MULTIPOINT INITIAL - FINAL PROBLEM FOR NONSTATIONARY RELATIVELY BOUNDED EQUATIONS OF SOBOLEV TYPE
    Sagadeeva, M. A.
    Badoyan, A. D.
    [J]. BULLETIN OF THE SOUTH URAL STATE UNIVERSITY SERIES-MATHEMATICAL MODELLING PROGRAMMING & COMPUTER SOFTWARE, 2014, 7 (03): : 128 - 134
  • [48] OPTIMAL-CONTROL FOR INTEGRODIFFERENTIAL EQUATIONS OF PARABOLIC TYPE
    DAPRATO, G
    ICHIKAWA, A
    [J]. SIAM JOURNAL ON CONTROL AND OPTIMIZATION, 1993, 31 (05) : 1167 - 1182
  • [49] An optimal control problem for a Lotka-Volterra competition model with chemo-repulsion
    Hernandez, Diana I.
    Rueda-Gomez, Diego A.
    Villamizar-Roa, elder J.
    [J]. ACTA MATHEMATICA SCIENTIA, 2024, 44 (02) : 721 - 751
  • [50] Optimal Control Problem for Cahn–Hilliard Equations with State Constraint
    Jiashan Zheng
    Yifu Wang
    [J]. Journal of Dynamical and Control Systems, 2015, 21 : 257 - 272