The variational stability of an optimal control problem for Volterra-type equations

被引:0
|
作者
N. I. Pogodaev
A. A. Tolstonogov
机构
[1] Institute for System Dynamics and Control Theory,
来源
Siberian Mathematical Journal | 2014年 / 55卷
关键词
Γ-convergence; variational stability; optimal control; partial differential equations;
D O I
暂无
中图分类号
学科分类号
摘要
We study the variational stability of an optimal control problem for a Volterra-type nonlinear functional-operator equation. This means that for this optimal control problem (Pɛ) with a parameter ɛ we study how its minimum value min(Pɛ) and its set of minimizers argmin(Pɛ) depend on ɛ. We illustrate the use of the variational stability theorem with a series of particular problems.
引用
收藏
页码:667 / 686
页数:19
相关论文
共 50 条
  • [21] Optimal Control, Contact Dynamics and Herglotz Variational Problem
    de Leon, Manuel
    Lainz, Manuel
    Munoz-Lecanda, Miguel C.
    JOURNAL OF NONLINEAR SCIENCE, 2023, 33 (01)
  • [22] Optimal control of a quasi-variational obstacle problem
    Samir Adly
    Maïtine Bergounioux
    Mohamed Ait Mansour
    Journal of Global Optimization, 2010, 47 : 421 - 435
  • [23] Optimal Control of Semilinear Elliptic Variational Bilateral Problem
    Qihong Chen Institute of Mathematics
    ActaMathematicaSinica(EnglishSeries), 2000, 16 (01) : 123 - 140
  • [24] Optimal control of a quasi-variational obstacle problem
    Adly, Samir
    Bergounioux, Maitine
    Mansour, Mohamed Ait
    JOURNAL OF GLOBAL OPTIMIZATION, 2010, 47 (03) : 421 - 435
  • [25] Optimal Control, Contact Dynamics and Herglotz Variational Problem
    Manuel de León
    Manuel Lainz
    Miguel C. Muñoz-Lecanda
    Journal of Nonlinear Science, 2023, 33
  • [26] Optimal Control of Semilinear Elliptic Variational Bilateral Problem
    Chen Q.
    Acta Mathematica Sinica, 2000, 16 (1) : 123 - 140
  • [27] Optimal control problem for stochastic evolution equations in Hilbert spaces
    Zhou, Jianjun
    Liu, Bin
    INTERNATIONAL JOURNAL OF CONTROL, 2010, 83 (09) : 1771 - 1784
  • [28] Coupled Variational Inequalities: Existence, Stability and Optimal Control
    Jinjie Liu
    Xinmin Yang
    Shengda Zeng
    Yong Zhao
    Journal of Optimization Theory and Applications, 2022, 193 : 877 - 909
  • [29] Coupled Variational Inequalities: Existence, Stability and Optimal Control
    Liu, Jinjie
    Yang, Xinmin
    Zeng, Shengda
    Zhao, Yong
    JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2022, 193 (1-3) : 877 - 909
  • [30] Optimal control for semilinear evolutionary variational bilateral problem
    Chen, QH
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 277 (01) : 303 - 323