Simulation-based bayesian inference using BUGS

被引:0
作者
Ching-fan Sheu
Suzanne L. O’Curry
机构
[1] DePaul University,Department of Psychology
来源
Behavior Research Methods, Instruments, & Computers | 1998年 / 30卷
关键词
Bayesian Inference; Gibbs Sampling; Markov Chain Monte Carlo Method; Bayesian Computation; Markov Chain Monte Carlo Procedure;
D O I
暂无
中图分类号
学科分类号
摘要
We illustrate the application of BUGS, a Bayesian computer program, with two examples. The algorithm used in the program is a popular Markov chain Monte Carlo procedure called Gibbs sampling. Bayesian analysis based on simulation has been applied to a wide range of complex problems (Gilks, Richardson, & Spiegelhalter, 1996). The availability of a general purpose program like BUGS should facilitate important applications of Bayesian inference in psychological research.
引用
收藏
页码:232 / 237
页数:5
相关论文
共 11 条
[1]  
Casella G.(1992)Understanding the Gibbs sampler American Statistician 46 167-174
[2]  
George E.(1996)Markov chain Monte Carlo convergence diagnostics: A comparative review Journal of American Statistical Association 91 883-905
[3]  
Cowles M. K.(1963)Bayesian statistical inference in psychological research Psychological Review 70 193-242
[4]  
Carlin B. P.(1990)Sampling-based approaches to calculating marginal densities Journal of the American Statistical Association 85 398-409
[5]  
Edwards W.(1984)Stochastic relaxation, Gibbs distribution and the Bayesian restoration of images IEEE Transactions on Pattern Analysis & Machine Intelligence 6 721-741
[6]  
Lindman H.(undefined)undefined undefined undefined undefined-undefined
[7]  
Savage L. J.(undefined)undefined undefined undefined undefined-undefined
[8]  
Gelfand A. E.(undefined)undefined undefined undefined undefined-undefined
[9]  
Smith A. F. M.(undefined)undefined undefined undefined undefined-undefined
[10]  
Geman S.(undefined)undefined undefined undefined undefined-undefined