Study on geometric structures on Lie algebroids with optimal control applications

被引:0
作者
Esmaeil Peyghan
Liviu Popescu
机构
[1] Arak University,Department of Mathematics, Faculty of Science
[2] University of Craiova,Department of Statistics and Economic Informatics, Faculty of Economics and Business Administration
来源
Journal of Nonlinear Mathematical Physics | 2020年 / 27卷
关键词
Berwald and Yano-derivatives; Covariant derivative; Douglas tensor; Lie algebroid; Optimal control;
D O I
暂无
中图分类号
学科分类号
摘要
We construct ρ£-covariant derivatives in π*π as the generalization of covariant derivative in π*π to £πE. Moreover, we introduce Berwald and Yano derivatives as two important classes of ρ£-covariant derivatives in π*π and we study properties of them. Finally, we solve an optimal control problem using some geometric structures and Pontryagin Maximum Principle on Lie algebroids.
引用
收藏
页码:550 / 580
页数:30
相关论文
共 50 条
  • [41] Multipoint instantaneous optimal control of structures
    Akhiev, SS
    Aldemir, U
    Bakioglu, M
    COMPUTERS & STRUCTURES, 2002, 80 (11) : 909 - 917
  • [42] On Cost Design in Applications of Optimal Control
    Jouini, Taouba
    Rantzer, Anders
    IEEE CONTROL SYSTEMS LETTERS, 2022, 6 : 452 - 457
  • [43] Optimal control of organic matter applications
    Putelat, Thibaut
    Whitmore, Andrew P.
    EUROPEAN JOURNAL OF AGRONOMY, 2023, 143
  • [44] Applications of Optimal Control to Production Planning
    Popescu, Liviu
    INFORMATION TECHNOLOGY AND CONTROL, 2020, 49 (01): : 89 - 99
  • [45] Nonadiabatic geometric quantum computation with optimal control on superconducting circuits
    Jing Xu
    Sai Li
    Tao Chen
    Zheng-Yuan Xue
    Frontiers of Physics, 2020, 15
  • [46] Geometric numerical integration of nonholonomic systems and optimal control problems
    de León, M
    de Diego, DM
    Santamaría-Merino, A
    LAGRANGIAN AND HAMILTONIAN METHODS IN NONLINEAR CONTROL 2003, 2003, : 141 - 146
  • [47] The turnpike property in nonlinear optimal control-A geometric approach
    Sakamoto, Noboru
    Zuazua, Enrique
    AUTOMATICA, 2021, 134
  • [48] Zermelo navigation problems on surfaces of revolution and geometric optimal control
    Bonnard, Bernard
    Cots, Olivier
    Wembe, Boris
    ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2023, 29 : 376 - 814
  • [49] Geometric structure-preserving optimal control of a rigid body
    A. M. Bloch
    I. I. Hussein
    M. Leok
    A. K. Sanyal
    Journal of Dynamical and Control Systems, 2009, 15 : 307 - 330
  • [50] GEOMETRIC STRUCTURE-PRESERVING OPTIMAL CONTROL OF A RIGID BODY
    Bloch, A. M.
    Hussein, I. I.
    Leok, M.
    Sanyal, A. K.
    JOURNAL OF DYNAMICAL AND CONTROL SYSTEMS, 2009, 15 (03) : 307 - 330