Study on geometric structures on Lie algebroids with optimal control applications

被引:0
作者
Esmaeil Peyghan
Liviu Popescu
机构
[1] Arak University,Department of Mathematics, Faculty of Science
[2] University of Craiova,Department of Statistics and Economic Informatics, Faculty of Economics and Business Administration
来源
Journal of Nonlinear Mathematical Physics | 2020年 / 27卷
关键词
Berwald and Yano-derivatives; Covariant derivative; Douglas tensor; Lie algebroid; Optimal control;
D O I
暂无
中图分类号
学科分类号
摘要
We construct ρ£-covariant derivatives in π*π as the generalization of covariant derivative in π*π to £πE. Moreover, we introduce Berwald and Yano derivatives as two important classes of ρ£-covariant derivatives in π*π and we study properties of them. Finally, we solve an optimal control problem using some geometric structures and Pontryagin Maximum Principle on Lie algebroids.
引用
收藏
页码:550 / 580
页数:30
相关论文
共 50 条
  • [31] Optimal Control on Lie Groups: The Projection Operator Approach
    Saccon, Alessandro
    Hauser, John
    Pedro Aguiar, A.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2013, 58 (09) : 2230 - 2245
  • [32] An Optimal Control Approach to Particle Filtering on Lie Groups
    Yuan, Bo
    Zhang, Qinsheng
    Chen, Yongxin
    IEEE CONTROL SYSTEMS LETTERS, 2023, 7 : 1195 - 1200
  • [33] Optimal control of spins by Analytical Lie Algebraic Derivatives
    Foroozandeh, Mohammadali
    Singh, Pranav
    AUTOMATICA, 2021, 129
  • [34] Optimal control on Schrodinger Lie group and the behaviour of the dynamics
    Sahoo, Soumya Ranjan
    Sahoo, Soumya Prakash
    Jena, Amit
    Pati, K. C.
    IMA JOURNAL OF MATHEMATICAL CONTROL AND INFORMATION, 2018, 35 (01) : 213 - 229
  • [35] Optimal Control and Geodesics on Quadratic Matrix Lie Groups
    Anthony M. Bloch
    Peter E. Crouch
    Jerrold E. Marsden
    Amit K. Sanyal
    Foundations of Computational Mathematics, 2008, 8 : 469 - 500
  • [36] Optimal control and geodesics on quadratic matrix Lie groups
    Bloch, Anthony M.
    Crouch, Peter E.
    Marsden, Jerrold E.
    Sanyal, Amit K.
    FOUNDATIONS OF COMPUTATIONAL MATHEMATICS, 2008, 8 (04) : 469 - 500
  • [37] EMBEDDED GEODESIC PROBLEMS AND OPTIMAL CONTROL FOR MATRIX LIE GROUPS
    Bloch, Anthony M.
    Crouch, Peter E.
    Nordkvist, Nikolaj
    Sanyal, Amit K.
    JOURNAL OF GEOMETRIC MECHANICS, 2011, 3 (02) : 197 - 223
  • [38] Symmetry Reduction in Optimal Control of Multiagent Systems on Lie Groups
    Colombo, Leonardo Jesus
    Dimarogonas, Dimos V.
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 2020, 65 (11) : 4973 - 4980
  • [39] Optimal control on SU(2) Lie group with stability analysis
    Tiwari A.
    Jena A.
    International Journal of Dynamics and Control, 2020, 8 (02) : 508 - 517
  • [40] Multipoint instantaneous optimal control of structures
    Akhiev, SS
    Aldemir, U
    Bakioglu, M
    COMPUTERS & STRUCTURES, 2002, 80 (11) : 909 - 917