Local antimagic orientation of graphs

被引:0
|
作者
Yulin Chang
Fei Jing
Guanghui Wang
机构
[1] Shandong University,School of Mathematics
来源
Journal of Combinatorial Optimization | 2020年 / 39卷
关键词
Antimagic orientation; Local antimagic orientation; Combinatorial Nullstellensatz;
D O I
暂无
中图分类号
学科分类号
摘要
An antimagic labelling of a digraph D with m arcs is a bijection from the set of arcs of D to {1,…,m}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,\ldots ,m\}$$\end{document} such that any two vertices have distinct vertex-sums, where the vertex-sum of a vertex v∈V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(D)$$\end{document} is the sum of labels of all arcs entering v minus the sum of labels of all arcs leaving v. An orientation D of a graph G is antimagic if D has an antimagic labelling. In 2010, Hefetz, Mu¨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{\text {u}}$$\end{document}tze and Schwartz conjectured that every connected graph admits an antimagic orientation. The conjecture is still open, even for trees. Motivated by directed version of the well-known 1-2-3 Conjecture, we deal with vertex-sums such that only adjacent vertices must be distinguished. An orientation D of a graph G is local antimagic if there is a bijection from E(G) to {1,…,|E(G)|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,\ldots ,|E(G)|\}$$\end{document} such that any two adjacent vertices have distinct vertex-sums. We prove that every graph with maximum degree at most 4 admits a local antimagic orientation by Alon’s Combinatorial Nullstellensatz.
引用
收藏
页码:1129 / 1152
页数:23
相关论文
共 50 条
  • [41] Neighbor Sum Distinguishing Index of Sparse Graphs
    Ji Hui WANG
    Bao Jian QIU
    Jian Sheng CAI
    Acta Mathematica Sinica,English Series, 2020, (06) : 673 - 690
  • [42] Combinatorial Nullstellensatz and DP-coloring of graphs
    Kaul, Hemanshu
    Mudrock, Jeffrey A.
    DISCRETE MATHEMATICS, 2020, 343 (12)
  • [43] Neighbor Sum Distinguishing Index of Sparse Graphs
    Ji Hui Wang
    Bao Jian Qiu
    Jian Sheng Cai
    Acta Mathematica Sinica, English Series, 2020, 36 : 673 - 690
  • [44] Neighbor Sum Distinguishing Index of Sparse Graphs
    Wang, Ji Hui
    Qiu, Bao Jian
    Cai, Jian Sheng
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (06) : 673 - 690
  • [45] Weight Choosability of Graphs with Maximum Degree 4
    Lu, You
    Li, Chong
    Miao, Zheng Ke
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2020, 36 (06) : 723 - 732
  • [46] Neighbor Sum Distinguishing Index of Subcubic Graphs
    Huo, Jingjing
    Wang, Weifan
    Xu, Chuandong
    GRAPHS AND COMBINATORICS, 2017, 33 (02) : 419 - 431
  • [47] Total list weighting of Cartesian product of graphs
    Tang, Yunfang
    Yao, Yuting
    DISCRETE APPLIED MATHEMATICS, 2025, 367 : 30 - 39
  • [48] Neighbor Sum Distinguishing Index of Subcubic Graphs
    Jingjing Huo
    Weifan Wang
    Chuandong Xu
    Graphs and Combinatorics, 2017, 33 : 419 - 431
  • [49] Weight Choosability of Graphs with Maximum Degree 4
    You LU
    Chong LI
    Zheng Ke MIAO
    Acta Mathematica Sinica,English Series, 2020, (06) : 723 - 732
  • [50] Weight Choosability of Graphs with Maximum Degree 4
    You Lu
    Chong Li
    Zheng Ke Miao
    Acta Mathematica Sinica, English Series, 2020, 36 : 723 - 732