Local antimagic orientation of graphs

被引:0
|
作者
Yulin Chang
Fei Jing
Guanghui Wang
机构
[1] Shandong University,School of Mathematics
来源
Journal of Combinatorial Optimization | 2020年 / 39卷
关键词
Antimagic orientation; Local antimagic orientation; Combinatorial Nullstellensatz;
D O I
暂无
中图分类号
学科分类号
摘要
An antimagic labelling of a digraph D with m arcs is a bijection from the set of arcs of D to {1,…,m}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,\ldots ,m\}$$\end{document} such that any two vertices have distinct vertex-sums, where the vertex-sum of a vertex v∈V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(D)$$\end{document} is the sum of labels of all arcs entering v minus the sum of labels of all arcs leaving v. An orientation D of a graph G is antimagic if D has an antimagic labelling. In 2010, Hefetz, Mu¨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{\text {u}}$$\end{document}tze and Schwartz conjectured that every connected graph admits an antimagic orientation. The conjecture is still open, even for trees. Motivated by directed version of the well-known 1-2-3 Conjecture, we deal with vertex-sums such that only adjacent vertices must be distinguished. An orientation D of a graph G is local antimagic if there is a bijection from E(G) to {1,…,|E(G)|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,\ldots ,|E(G)|\}$$\end{document} such that any two adjacent vertices have distinct vertex-sums. We prove that every graph with maximum degree at most 4 admits a local antimagic orientation by Alon’s Combinatorial Nullstellensatz.
引用
收藏
页码:1129 / 1152
页数:23
相关论文
共 50 条
  • [31] Additive Coloring of Planar Graphs
    Bartnicki, Tomasz
    Bosek, Bartlomiej
    Czerwinski, Sebastian
    Grytczuk, Jaroslaw
    Matecki, Grzegorz
    Zelazny, Wiktor
    GRAPHS AND COMBINATORICS, 2014, 30 (05) : 1087 - 1098
  • [32] The hat guessing number of graphs
    Alon, Noga
    Ben-Eliezer, Omri
    Shangguan, Chong
    Tamo, Itzhak
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2020, 144 : 119 - 149
  • [33] On list (p, 1)-total labellings of special planar graphs and 1-planar graphs
    Lin Sun
    Guanglong Yu
    Jianliang Wu
    Journal of Combinatorial Optimization, 2024, 47
  • [34] On list (p, 1)-total labellings of special planar graphs and 1-planar graphs
    Sun, Lin
    Yu, Guanglong
    Wu, Jianliang
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2024, 47 (03)
  • [35] Total weight choosability of Mycielski graphs
    Tang, Yunfang
    Zhu, Xuding
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2017, 33 (01) : 165 - 182
  • [36] Some notes on the energy of graphs with loops
    Akbari, S.
    Kucukcifci, S.
    Saveh, H.
    LINEAR & MULTILINEAR ALGEBRA, 2025,
  • [37] Total Weight Choosability of Cone Graphs
    Yunfang Tang
    Tsai-Lien Wong
    Xuding Zhu
    Graphs and Combinatorics, 2016, 32 : 1203 - 1216
  • [38] Computing the list chromatic index of graphs
    Schauz, Uwe
    JOURNAL OF DISCRETE ALGORITHMS, 2018, 52-53 : 182 - 191
  • [39] Total weight choosability of Mycielski graphs
    Yunfang Tang
    Xuding Zhu
    Journal of Combinatorial Optimization, 2017, 33 : 165 - 182
  • [40] Total Weight Choosability of Cone Graphs
    Tang, Yunfang
    Wong, Tsai-Lien
    Zhu, Xuding
    GRAPHS AND COMBINATORICS, 2016, 32 (03) : 1203 - 1216