Local antimagic orientation of graphs

被引:0
|
作者
Yulin Chang
Fei Jing
Guanghui Wang
机构
[1] Shandong University,School of Mathematics
来源
Journal of Combinatorial Optimization | 2020年 / 39卷
关键词
Antimagic orientation; Local antimagic orientation; Combinatorial Nullstellensatz;
D O I
暂无
中图分类号
学科分类号
摘要
An antimagic labelling of a digraph D with m arcs is a bijection from the set of arcs of D to {1,…,m}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,\ldots ,m\}$$\end{document} such that any two vertices have distinct vertex-sums, where the vertex-sum of a vertex v∈V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(D)$$\end{document} is the sum of labels of all arcs entering v minus the sum of labels of all arcs leaving v. An orientation D of a graph G is antimagic if D has an antimagic labelling. In 2010, Hefetz, Mu¨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{\text {u}}$$\end{document}tze and Schwartz conjectured that every connected graph admits an antimagic orientation. The conjecture is still open, even for trees. Motivated by directed version of the well-known 1-2-3 Conjecture, we deal with vertex-sums such that only adjacent vertices must be distinguished. An orientation D of a graph G is local antimagic if there is a bijection from E(G) to {1,…,|E(G)|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,\ldots ,|E(G)|\}$$\end{document} such that any two adjacent vertices have distinct vertex-sums. We prove that every graph with maximum degree at most 4 admits a local antimagic orientation by Alon’s Combinatorial Nullstellensatz.
引用
收藏
页码:1129 / 1152
页数:23
相关论文
共 50 条
  • [21] List-antimagic labeling of vertex-weighted graphs
    Berikkyzy, Zhanar
    Brandt, Axel
    Jahanbekam, Sogol
    Larsen, Victor
    Rorabaugh, Danny
    DISCRETE MATHEMATICS AND THEORETICAL COMPUTER SCIENCE, 2021, 23 (03)
  • [22] Weighted antimagic labeling
    Matamala, Martin
    Zamora, Jose
    DISCRETE APPLIED MATHEMATICS, 2018, 245 : 194 - 201
  • [23] Caterpillars Have Antimagic Orientations
    Lozano, Antoni
    ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2018, 26 (03): : 171 - 180
  • [24] Graph antimagic labeling: A survey
    Jin, Jingxiang
    Tu, Zhuojie
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2023,
  • [25] Every graph is homeomorphic to an antimagic bipartite graph
    Tey, Joaquin
    Goldfeder, Ilan A.
    Javier-Nol, Nahid Y.
    BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (02):
  • [26] Antimagic orientations for the complete k-ary trees
    Song, Chen
    Hao, Rong-Xia
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2019, 38 (04) : 1077 - 1085
  • [27] Antimagic orientations for the complete k-ary trees
    Chen Song
    Rong-Xia Hao
    Journal of Combinatorial Optimization, 2019, 38 : 1077 - 1085
  • [28] Lucky labelings of graphs
    Czerwinski, Sebastian
    Grytczuk, Jaroslaw
    Zelazny, Wiktor
    INFORMATION PROCESSING LETTERS, 2009, 109 (18) : 1078 - 1081
  • [29] On the Lucky Choice Number of Graphs
    Akbari, S.
    Ghanbari, M.
    Manaviyat, R.
    Zare, S.
    GRAPHS AND COMBINATORICS, 2013, 29 (02) : 157 - 163
  • [30] On the Lucky Choice Number of Graphs
    S. Akbari
    M. Ghanbari
    R. Manaviyat
    S. Zare
    Graphs and Combinatorics, 2013, 29 : 157 - 163