Local antimagic orientation of graphs

被引:0
|
作者
Yulin Chang
Fei Jing
Guanghui Wang
机构
[1] Shandong University,School of Mathematics
来源
Journal of Combinatorial Optimization | 2020年 / 39卷
关键词
Antimagic orientation; Local antimagic orientation; Combinatorial Nullstellensatz;
D O I
暂无
中图分类号
学科分类号
摘要
An antimagic labelling of a digraph D with m arcs is a bijection from the set of arcs of D to {1,…,m}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,\ldots ,m\}$$\end{document} such that any two vertices have distinct vertex-sums, where the vertex-sum of a vertex v∈V(D)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$v\in V(D)$$\end{document} is the sum of labels of all arcs entering v minus the sum of labels of all arcs leaving v. An orientation D of a graph G is antimagic if D has an antimagic labelling. In 2010, Hefetz, Mu¨\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\ddot{\text {u}}$$\end{document}tze and Schwartz conjectured that every connected graph admits an antimagic orientation. The conjecture is still open, even for trees. Motivated by directed version of the well-known 1-2-3 Conjecture, we deal with vertex-sums such that only adjacent vertices must be distinguished. An orientation D of a graph G is local antimagic if there is a bijection from E(G) to {1,…,|E(G)|}\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\{1,\ldots ,|E(G)|\}$$\end{document} such that any two adjacent vertices have distinct vertex-sums. We prove that every graph with maximum degree at most 4 admits a local antimagic orientation by Alon’s Combinatorial Nullstellensatz.
引用
收藏
页码:1129 / 1152
页数:23
相关论文
共 50 条
  • [1] Local antimagic orientation of graphs
    Chang, Yulin
    Jing, Fei
    Wang, Guanghui
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2020, 39 (04) : 1129 - 1152
  • [2] Antimagic orientation of biregular bipartite graphs
    Shan, Songling
    Yu, Xiaowei
    ELECTRONIC JOURNAL OF COMBINATORICS, 2017, 24 (04)
  • [3] Antimagic orientation of Halin graphs
    Yu, Xiaowei
    Chang, Yulin
    Zhou, Shan
    DISCRETE MATHEMATICS, 2019, 342 (11) : 3160 - 3165
  • [4] Local antimagic labeling of graphs
    Yu, Xiaowei
    Hu, Jie
    Yang, Donglei
    Wu, Jianliang
    Wang, Guanghui
    APPLIED MATHEMATICS AND COMPUTATION, 2018, 322 : 30 - 39
  • [5] Local antimagic orientations of d-degenerate graphs
    Hu, Jie
    Ouyang, Qiancheng
    Wang, Guanghui
    DISCRETE APPLIED MATHEMATICS, 2019, 257 : 206 - 215
  • [6] Antimagic orientation of graphs with minimum degree at least 33
    Shan, Songling
    JOURNAL OF GRAPH THEORY, 2021, 98 (04) : 676 - 690
  • [7] Antimagic orientation of lobsters
    Gao, Yuping
    Shan, Songling
    DISCRETE APPLIED MATHEMATICS, 2020, 287 : 21 - 26
  • [8] Antimagic orientation of forests
    Shan, Songling
    Yu, Xiaowei
    DISCRETE MATHEMATICS, 2024, 347 (01)
  • [9] Antimagic labeling for subdivisions of graphs
    Li, Wei-Tian
    DISCRETE APPLIED MATHEMATICS, 2025, 363 : 215 - 223
  • [10] Antimagic orientation of subdivided caterpillars
    Ferraro, Jessica
    Newkirk, Genevieve
    Shan, Songling
    DISCRETE APPLIED MATHEMATICS, 2022, 313 : 45 - 52