Lag penalized weighted correlation for time series clustering

被引:0
作者
Thevaa Chandereng
Anthony Gitter
机构
[1] Department of Biostatistics and Medical Informatics,
[2] University of Wisconsin-Madison,undefined
[3] Morgridge Institute of Research,undefined
[4] Department of Statistics,undefined
[5] University of Wisconsin-Madison,undefined
来源
BMC Bioinformatics | / 21卷
关键词
Unsupervised learning; Temporal alignment; Hierarchical clustering;
D O I
暂无
中图分类号
学科分类号
摘要
引用
收藏
相关论文
共 165 条
[1]  
Bar-Joseph Z(2012)Studying and modelling dynamic biological processes using time-series gene expression data Nat Rev Genet 13 552-64
[2]  
Gitter A(2015)Dynamics in Transcriptomics: Advancements in RNA-seq Time Course and Downstream Analysis Comput Struct Biotechnol J 13 469-77
[3]  
Simon I(2002)Judging the quality of gene expression-based clustering methods using gene annotation Genome Res 12 1574-81
[4]  
Spies D(2014)On the selection of appropriate distances for gene expression data clustering BMC Bioinformatics 15 2-24
[5]  
Ciaudo C(2017)Selecting the most appropriate time points to profile in high-throughput studies eLife 6 18541-508
[6]  
Gibbons FD(2018)Clustering gene expression time series data using an infinite Gaussian process mixture model PLoS Comput Biol 14 1005896-6
[7]  
Roth FP(2009)Computing and visualizing dynamic time warping alignments in R: the dtw package J Stat Softw 31 1-76
[8]  
Jaskowiak PA(2001)Aligning gene expression time series with time warping algorithms Bioinformatics 17 495-43
[9]  
Campello RJ(2017)LEAP: constructing gene co-expression networks for single-cell rna-sequencing data using pseudotime ordering Bioinformatics 33 764-65
[10]  
Costa IG(2019)Clustering time series by linear dependency Stat Comput 29 655-2