A Large Deviations Principle Related to the Strong Arc-Sine Law

被引:0
|
作者
Alain Rouault
Marc Yor
Marguerite Zani
机构
[1] LAMA,Laboratoire de Probabilités
[2] Université de Versailles,undefined
[3] Université Paris 6,undefined
[4] Site Chevaleret,undefined
[5] Université des Sciences et Technologies de Lille U.F.R. de Mathématiques,undefined
[6] Bât,undefined
来源
Journal of Theoretical Probability | 2002年 / 15卷
关键词
Arc-sine law; large deviations; Ornstein–Uhlenbeck process;
D O I
暂无
中图分类号
学科分类号
摘要
We show a large deviations principle for the family of random variables \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document} $$\{ \frac{1}{t}\int_0^t 1 _{B_u } >0du\} $$ \end{document} when t→+∞, where B=(Bu,u≥0) is a standard linear Brownian motion.
引用
收藏
页码:793 / 815
页数:22
相关论文
共 50 条
  • [1] A large deviations principle related to the strong arc-sine law
    Rouault, A
    Yor, M
    Zani, M
    JOURNAL OF THEORETICAL PROBABILITY, 2002, 15 (03) : 793 - 815
  • [2] The intermediate arc-sine law
    Nikitin, Y
    Orsingher, E
    STATISTICS & PROBABILITY LETTERS, 2000, 49 (02) : 119 - 125
  • [3] Some independence results related to the arc-sine law
    Bertoin, J
    Yor, M
    JOURNAL OF THEORETICAL PROBABILITY, 1996, 9 (02) : 447 - 458
  • [4] On Functional Versions of the Arc-Sine Law
    István Berkes
    Siegfried Hörmann
    Lajos Horváth
    Journal of Theoretical Probability, 2010, 23 : 109 - 126
  • [5] Corridor options and arc-sine law
    Fusai, G
    ANNALS OF APPLIED PROBABILITY, 2000, 10 (02) : 634 - 663
  • [6] On Functional Versions of the Arc-Sine Law
    Berkes, Istvan
    Hormann, Siegfried
    Horvath, Lajos
    JOURNAL OF THEORETICAL PROBABILITY, 2010, 23 (01) : 109 - 126
  • [7] A scaling proof for Walsh's Brownian motion extended arc-sine law
    Vakeroudis, Stavros
    Yor, Marc
    ELECTRONIC COMMUNICATIONS IN PROBABILITY, 2012, 17 : 1 - 9
  • [8] THE ARC-SINE LAW AND ITS ANALOGS FOR PROCESSES GOVERNED BY SIGNED AND COMPLEX MEASURES
    HOCHBERG, KJ
    ORSINGHER, E
    STOCHASTIC PROCESSES AND THEIR APPLICATIONS, 1994, 52 (02) : 273 - 292
  • [9] An Arc-Sine Law for Last Hitting Points in the Two-Parameter Wiener Space
    Kim, Jeong-Gyoo
    MATHEMATICS, 2019, 7 (11)
  • [10] Large deviations and strong mixing
    Bryc, W
    Dembo, A
    ANNALES DE L INSTITUT HENRI POINCARE-PROBABILITES ET STATISTIQUES, 1996, 32 (04): : 549 - 569