Adjoints of linear fractional composition operators on weighted Hardy spaces

被引:0
作者
Čučković Z. [1 ]
Le T. [1 ]
机构
[1] Department of Mathematics and Statistics, University of Toledo, Mail Stop 942, Toledo, 43606, OH
来源
Acta Scientiarum Mathematicarum | 2016年 / 82卷 / 3-4期
关键词
Adjoint; Composition operator; Weighted Hardy space;
D O I
10.14232/actasm-015-801-z
中图分类号
学科分类号
摘要
It is well known that on the Hardy space H2(D) or weighted Bergman space A2α(D) over the unit disk, the adjoint of a linear fractional composition operator equals the product of a composition operator and two Toeplitz operators. On S2(D), the space of analytic functions on the disk whose first derivatives belong to H2(D), Heller showed that a similar formula holds modulo the ideal of compact operators. In this paper we investigate what the situation is like on other weighted Hardy spaces. © 2016 Bolyai Institute, University of Szeged.
引用
收藏
页码:651 / 662
页数:11
相关论文
共 12 条
  • [1] Bourdon P.S., Shapiro J.H., Adjoints of rationally induced composition operators, J. Funct. Anal., 255, pp. 1995-2012, (2008)
  • [2] Conway J.B., A Course in Functional Analysis, 96, (1990)
  • [3] Cowen C.C., Linear fractional composition operators on H<sup>2</sup>, Integral Equations Operator Theory, 11, pp. 151-160, (1988)
  • [4] Cowen C.C., Gallardo-Gutierrez E.A., A new class of operators and a description of adjoints of composition operators, J. Funct. Anal., 238, pp. 447-462, (2006)
  • [5] Cowen C.C., MacCluer B.D., Composition Operators on Spaces of Analytic Functions, (1995)
  • [6] Gallardo-Gutierrez E.A., Montes-Rodriguez A., Adjoints of linear fractional composition operators on the Dirichlet space, Math. Ann., 327, pp. 117-134, (2003)
  • [7] Hammond C., Moorhouse J., Robbins M.E., Adjoints of composition operators with rational symbol, J. Math. Anal. Appl., 341, pp. 626-639, (2008)
  • [8] Heller K., Adjoints of linear fractional composition operators on S<sup>2</sup>(D), J. Math. Anal. Appl., 394, pp. 724-737, (2012)
  • [9] Hurst P.R., Relating composition operators on different weighted Hardy spaces, Arch. Math. (Basel), 68, pp. 503-513, (1997)
  • [10] Martin M.J., Vukotic D., Adjoints of composition operators on Hilbert spaces of analytic functions, J. Funct. Anal., 238, pp. 298-312, (2006)