A non-isothermal phase-field model for piezo–ferroelectric materials

被引:0
作者
A. Borrelli
D. Grandi
M. Fabrizio
M. C. Patria
机构
[1] Università degli Studi di Ferrara,Dipartimento di Matematica e Informatica
[2] Università di Bologna,Dipartimento di Matematica
来源
Continuum Mechanics and Thermodynamics | 2019年 / 31卷
关键词
Ferroelectric; Ferroelastic; Hysteresis; Phase field; Non-isothermal model;
D O I
暂无
中图分类号
学科分类号
摘要
We propose a model for the study of piezo–ferroelectric materials, based on the Ginzburg–Landau approach to the ferroelectric transition, in which the inelastic deformation is a direct function of the ferroelectric polarization. The non-isothermal effects related to the phase change and other dissipative phenomena are considered by a suitable energy balance equation, according to the restrictions of the second principle. The hysteresis phenomena for polarization and inelastic strain are considered from both the energetic perspective of the vector Ginzburg–Landau equation and the dissipation-dominated perspective of the rate-independent evolutionary equations.
引用
收藏
页码:741 / 750
页数:9
相关论文
共 41 条
[1]  
Bassiouny E(1988)Thermodynamical formulation for coupled electromechanical hysteresis effects—I. Basic equations. II Poling of ceramics Int. J. Eng. Sci. 26 1279-1306
[2]  
Ghaleb A(1988)Thermodynamical formulation for coupled electromechanical hysteresis effects—III. Parameter identification. IV. Combined electromechanical loading Int. J. Eng. Sci. 26 975-1000
[3]  
Maugin G(2002)Saint–Venant’s principle for a antiplane shear deformations of linear piezoelectric materials SIAM J. Appl. Math. 62 2027-2044
[4]  
Bassiouny E(2004)Exponential decay of end effects in anti-plane shear for functionally graded piezoelectric materials Proc. R. Soc. Lond. A 460 1193-1212
[5]  
Ghaleb A(2008)Ice-water and liquid-vapor phase transitions by a Ginzburg–Landau model J. Math. Phys. 49 102902-156
[6]  
Maugin G(2006)A thermodynamic approach to non-isothermal phase-field evolution in continuum physics Phys. D 214 144-525
[7]  
Borrelli A(2011)Thermodynamics of non-local materials: extra fluxes and internal powers Continuum Mech. Thermodyn. 23 509-192
[8]  
Horgan CO(1996)Generalized Ginzburg–Landau and Cahn–Hilliard equations based on a microforce balance Phys. D 92 178-268
[9]  
Patria MC(2001)Ferroelectric and ferroelastic piezoceramics modeling of electromechanical hysteresis phenomena Continuum Mech. Thermodyn. 13 219-695
[10]  
Borrelli A(1999)Phenomenological modeling of the non-linear electro-mechanical coupling in ferroelectrics Int. J. Solids Struct. 36 669-152