Transport, Thermodynamic, and Thermophysical Properties of Aqueous Mixtures of Poly (Ethylene Glycol): Experimental and Modeling

被引:0
作者
Mohsen Pirdashti
Mahnam Ketabi
Poorya Mobalegholeslam
Silvia Curteanu
Elena Niculina Dragoi
Alireza Barani
机构
[1] Shomal University,Chemical Engineering Department, Faculty of Engineering
[2] Islamic Azad University,Young Researchers and Elite Club, Babol Branch
[3] “Gheorghe Asachi” Technical University of Iasi,Department of Chemical Engineering, Faculty of Chemical Engineering and Environmental Protection
来源
International Journal of Thermophysics | 2019年 / 40卷
关键词
Artificial neural networks; Density; Original UNIFAC-VISCO; Poly(ethylene glycol); S-Wilson-NRF; Viscosity;
D O I
暂无
中图分类号
学科分类号
摘要
Density (ρ) and viscosity (η) of aqueous mixture containing poly(ethylene glycol)s (PEG)s with seven nominal molecular masses (1500 g·mol−1, 2000 g·mol−1, 3000 g·mol−1, 4000 g·mol−1, 6000 g·mol−1, 8000 g·mol−1, and 20 000 g·mol−1) have been experimentally measured at five temperatures (288.15 K, 293.15 K, 303.15 K, 308.15 K, and 313.15 K) and five concentrations of PEG (0.05, 0.10, 0.15, 0.20, and 0.25 mass fraction), at atmospheric pressure (0.1 MPa). Several thermophysical properties, including the apparent specific volume (Vφ\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{\varphi } $$\end{document}), excess molar volume (VmE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ V_{m}^{E} $$\end{document}), coefficient of thermal expansion (αP\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \upalpha_{\text{P}} $$\end{document}), excess coefficient of thermal expansion (αPE\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$ \upalpha_{P}^{E} $$\end{document}), were calculated using experimental data. The obtained excess parameters have been used to investigate the inter-intra molecular interactions in the liquid solutions. Moreover, the S-Wilson-NRF and modified UNIQUAC-FV thermodynamic models have been extended for the representation of the density of binary mixtures of PEG + water solutions and the original UNIFAC-VISCO, Z-UNIFAC-VISCO, UNIFAC-Sheng-VISCO, Chain-FV-VISCO, and UNIFAC-vdW-FV-VISCO thermodynamic models were applied to calculate the viscosity of PEG solutions. In addition, an alternative modeling approach in the form of artificial neural networks, developed with an evolutionary algorithm, namely differential evolution algorithm, was used for prediction of density of the mentioned solutions. The results of the neural network model show that this model is suitable for both correlation and prediction of the density of PEG solutions at different PEG molar masses, temperatures, and concentrations.
引用
收藏
相关论文
共 269 条
[1]  
Llovell F(2013)Free-volume theory coupled with soft-SAFT for viscosity calculations: comparison with molecular simulation and experimental data J. Phys. Chem. B 117 8159-8171
[2]  
Marcos RM(2015)Thermal conductivity, viscosity and rheology of a suspension based on Al Int. J. Heat Mass Transf. 83 187-191
[3]  
Vega LF(2016)O J. Phys. Chem. A 120 3253-3259
[4]  
Serebryakova MA(2007) nanoparticles and mixture of 90% ethylene glycol and 10% water Green Chem. 9 254-261
[5]  
Dimov SV(2005)Properties of polyvinylpyrrolidone in a deep eutectic solvent Green Chem. 7 64-505
[6]  
Bardakhanov SP(2013)Solute–solvent interactions within aqueous poly(ethylene glycol): solvatochromic probes for empirical determination and preferential solvation J. Biosci. Bioeng. 116 499-8
[7]  
Novopashin SA(2013)Partition separation and characterization of the polyhydroxyalkanoates synthase produced from recombinant Escherichia coli using an aqueous two-phase system Bioresour. Bioprocess. 1 2-415
[8]  
Sapir L(2014)Recombinant Food Bioprod. Process. 92 409-9
[9]  
Stanley CB(2015)-galactose dehydrogenase partitioning in aqueous two-phase systems: effect of pH and concentration of PEG and ammonium sulfate Sci. Rep. 5 1-94
[10]  
Harries D(2016)Partitioning of α-lactalbumin and β-lactoglobulin from cheese whey in aqueous two-phase systems containing poly (ethylene glycol) and sodium polyacrylate J. Chem. Thermodyn. 98 86-38