共 19 条
[1]
Gonzalez J., Rojas I., Pomares H., Et al., Improving the Accuracy while Preserving the Interpretability of Fuzzy Function Approximators by Means of Multi-Objective Evolutionary Algorithms, Intern. J. Approximate Reasoning, 44, 1, pp. 32-44, (2007)
[2]
Fazzolari M., Alcala R., Nojima Y., Et al., A Review of the Application of Multiobjective Evolutionary Fuzzy Systems: Current Status and Further Directions, IEEE Trans. Fuzzy Systems, 21, 1, pp. 45-65, (2013)
[3]
Gacto M.J., Alcala R., Herrera F., Interpretability of Linguistic Fuzzy Rule-Based Systems: An Overview of Interpretability Measures, Inform. Sci., 181, 20, pp. 4340-4360, (2011)
[4]
Pulkkinen P., Koivisto H., A Dynamically Constrained Multiobjective Genetic Fuzzy System for Regression Problems, IEEE Trans. Fuzzy Systems, 18, 1, pp. 161-177, (2010)
[5]
Casillas J., Martinez P., Benitez A.D., Learning Consistent, Complete and Compact Sets of Fuzzy Rules in Conjunctive Normal Form for Regression Problems, Soft Computing, 13, 5, pp. 451-465, (2009)
[6]
Alcala R., Ducange P., Herrera F., Et al., A Multiobjective Evolutionary Approach to Concurrently Learn Rule and Data Bases of Linguistic Fuzzy-Rule-Based Systems, IEEE Trans. Fuzzy Systems, 17, 5, pp. 1106-1122, (2009)
[7]
Mencar C., Castiello C., Cannone R., Fanelli A.M., Interpretability Assessment of Fuzzy Knowledge Bases: A Cointension Based Approach, Intern. J. Approximate Reasoning, 52, 4, pp. 501-518, (2011)
[8]
Ho S.-Y., Chen H.-M., Chen T.-K., Design of Accurate Classifiers with a Compact Fuzzy-Rule Base Using an Evolutionary Scatter Partition of Feature Space, IEEE Trans. Syst., Man, Cybern. B, 34, 2, pp. 1031-1044, (2004)
[9]
Hodashinsky I.A., Identification of Fuzzy Systems: Methods and Algorithms, Problemy Upravleniya, 4, pp. 15-23, (2009)
[10]
Hodashinsky I.A., Identification of Fuzzy Systems Based on the Simulated Annealing Algorithm and Methods Based on Derivatives, Informatsionnye Tekhnologii, 3, pp. 14-20, (2012)